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Abstract

Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid
molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be
used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as
biomarkers for diagnosis of prostate cancer.

Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed
on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from
lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were
demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual
plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy
above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of
prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA)
and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by
identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid
biomarkers were able to predict unknown populations accurately, and this was not influenced by patient’s age and race.
Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked
phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer.

Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of
hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity,
specificity and accuracy.
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Introduction

Biomarkers play pivotal roles in the care of patients with

cancers. However, currently used biomarkers for prostate cancer

are sub-optimal. For example, prostate specific antigen (PSA), the

most widely used biomarker, is controversial with regard to its

specificity and sensitivity in various populations [1]. There are also

concerns regarding possible over-diagnosis of prostate cancer by

PSA in patients with limited potential for disease progression [2–

4]. Several new biomarkers are being studied [5–7]; however,

none of these has proven to be useful for clinical testing.

Lipids comprise diverse classes of molecules with critical

functions in cellular energy storage, structure, and signaling.

Previous studies have demonstrated that the risk of prostate cancer

is increased with elevations in particular plasma fatty acids, such as

myristic acid, a-linolenic acid, and eicosapentaenoic acids [8–9].

Many individual polar lipid [10–17] and cholesterol [18–21]

species have been associated with the evolution of prostate cancer.

However, due to limitations in technology, only a few apparent

lipid species or lipid classes were analyzed in each of these studies,

and no attempt has been made to discover lipid molecules as

biomarkers for prostate cancer by large scale lipid profiling. Large

scale lipid profiling was not done until the introduction of mass-

spectrometry-based lipidomics strategies a decade ago [22].

Recently, reference values for 500 plasma lipid species were

obtained from a lipidomics analysis of the pooled and blended

plasma from 100 healthy people [23]. Lipidomics has been

demonstrated to be a useful tool in the study of mechanisms and
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biomarkers in many diseases such as obesity [24–25], atheroscle-

rosis [26–28], hypertension [29], diabetes [30], cystic fibrosis [31]

and other cancers [32–34]. As well, using shotgun lipidomics, a

few lipid species from 70 phospholipids species in urine were

identified as potential markers for prostate cancer [35]. However,

large scale plasma lipid profiling has not been performed on blood

and prostatic samples from patients with prostate cancer.

As described herein, we performed a global lipid profiling,

which included measurement of 340 phospholipid and 50

cholesteryl ester (CE) apparent lipid molecular species, on 141

plasma samples from 105 patients with prostate cancer and 36

male controls. By analysis with bioinformatic and statistical

methods, a few plasma lipid species have been selected as

biomarkers. The initial study demonstrates that these biomarkers

have a high sensitivity, specificity and accuracy in diagnosis of

prostate cancer.

Patients and Methods

Objectives
We hypothesize that prostate cancer tissues have distinct lipid

profiles to meet special needs for tumor survival and progression.

Distinctive lipid profiles will influence systemic lipid homeostasis

and be reflected in body fluids including plasma. Therefore,

detection of plasma apparent lipid molecular species will reflect the

existence and progression of prostate cancer. By comparing

plasma concentrations of hundreds of apparent lipid species

among populations with and without prostate cancer, a few

apparent lipid species that are the most representative of cancer

status will be identified as plasma lipid biomarkers in diagnosis of

prostate cancer.

Patients and Sample Collection
One hundred and five (105) plasma samples from 105 patients

with prostate cancer were obtained from the Cooperative Human

Tissue Network (CHTN), where plasma samples were pre-

collected from different clinics during the period from 2004–

2007. Before collection of plasma samples, patients had given

consent and had not undergone therapeutic interventions.

Diagnosis of prostate cancer for each patient was confirmed by

subsequent prostate biopsy or prostatectomy. Limited information

for each patient, including the patient’s age, race and pathological

diagnosis, was provided. Thirty six (36) plasma samples from male

controls were obtained from a collaborating author, who pre-

collected the plasma from 36 male patients at a community clinic,

where patients had their wellness checks or sought for medical help

for other diseases during the period 2006–2008. Criteria for

selection of controls were no history of prostate cancer, denial of

clinical manifestations of prostate cancer, and a low level of serum

PSA. The same protocol for collection of plasma was used in

collection of plasma samples from patients and controls: from each

subject, 10 ml whole blood was collected into a vacutainer tube

containing potassium-EDTA as anticoagulant. The plasma was

promptly separated (no more than 4 h after collection of whole

blood) and stored at 280uC immediately. All plasma samples were

transported on dry ice to the Kansas Lipidomics Research Center

(KLRC) for lipid analysis.

ESI-MS/MS Lipid Profiling
An automated electrospray ionization-tandem mass spectrom-

etry approach was used. In this approach, plasma lipid species are

identified at level of head group plus total acyl carbons: total

double bonds. The detected intensities, each defined by an intact

ion mass/charge (m/z) and a characteristic fragment m/z, are

herein described as ‘‘apparent lipid molecular species’’. Data

acquisition and analysis were carried out as described previously

[36–37] with modifications. Briefly, an aliquot of 3 ml of plasma

was used. Precise amounts of internal standards, obtained and

quantified as previously described [38], were added in the

following quantities (with some small variation in amounts in

different batches of internal standards): 0.60 nmol PC(12:0/12:0),

0.60 nmol PC(24:1/24:1), 0.60 nmol LPC(13:0), 0.60 nmol

LPC(19:0), 0.30 nmol PE(12:0/12:0), 0.30 nmol PE(23:0/23:0),

0.30 nmol LPE(14:0), 0.30 nmol LPE(18:0), 0.30 nmol LPG(14:0),

0.30 nmol LPG(18:0), 0.30 nmol PA(14:0/14:0), 0.30 nmol PA

(phytanoyl/phytanoyl), i.e. PA(20:0/20:0), 0.20 nmol PS(14:0/

14:0), 0.20 nmol PS(phytanoyl/phytanoyl), i.e. PS(20:0/20:0),

0.23 nmol PI (16:0/18:0), 2.5 nmol CE(13:0) and 2.5 nmol

CE(23:0). The sample and internal standard mixture were

combined with solvents, such that the ratio of chloroform/

methanol/300 mM ammonium acetate in water was 300/665/35,

and the final volume was 1.2 ml. This mixture, in autosampler

vials, was centrifuged for 15 min to pellet particulates before

presenting the lipid/solvent mixture to the autosampler. These

unfractionated lipid extracts were introduced by continuous

infusion into the ESI source on a triple quadrupole MS/MS

(API 4000, Applied Biosystems, Foster City, CA), using an

autosampler (LC Mini PAL, CTC Analytics AG, Zwingen,

Switzerland) fitted with the required injection loop for the

acquisition time and presented to the ESI needle at 30 ml/min.

Sequential precursor and neutral loss scans of the extracts

produced a series of spectra with each spectrum revealing a set of

lipid species containing a common head group fragment. Lipid

species were detected with the following scans: PC, SM, and

lysoPC, [M+H]+ ions in positive ion mode with Precursor of 184.1

(Pre 184.1); PE and lysoPE, [M+H]+ ions in positive ion mode

with Neutral Loss of 141.0 (NL 141.0); PI, [M+NH4]+ in positive

ion mode with NL 277.0; PS, [M+H]+ in positive ion mode with

NL 185.0; PA, [M+NH4]+ in positive ion mode with NL 115.0;

CE, [M+NH4]+ in positive ion mode with Pre 369.3. SM was

determined from the same mass spectrum as PC (precursors of m/

z 184 in positive mode) [39–40] and by comparison with PC

internal standards using a molar response factor for SM (in

comparison with PC) determined experimentally to be 0.39. Acyl,

alk(en)yl (‘‘ether-linked’’) ePCs and ePEs were determined in

relation to the same diacyl standards as other PC and PE species,

and no response factors were applied. The collision gas pressure

was set at 2 (arbitrary units). The collision energies, with nitrogen

in the collision cell, were +28 V for PE, +40 V for PC (and SM),

+25 V for PI, PS and PA, and +30 V for CE. Declustering

potentials were +100 V for all lipids except CE, for which the

declustering potential was +225 V. Entrance potentials were

+15 V for PE, +14 V for PC (and SM), PI, PA, and PS, and

+10 V for CE. Exit potentials were +11 V for PE, +14 V for PC

(and SM), PI, PA, PS, and +10 V for CE. The mass analyzers were

adjusted to a resolution of 0.7 u full width at half height. For each

spectrum, 9 to 150 continuum scans were averaged in multiple

channel analyzer (MCA) mode. The source temperature (heated

nebulizer) was 100uC, the interface heater was on, +5.5 kV or

24.5 kV were applied to the electrospray capillary, the curtain gas

was set at 20 (arbitrary units), and the two ion source gases were

set at 45 (arbitrary units).

The background of each spectrum was subtracted, the data

were smoothed, and peak areas integrated using a custom script

and Applied Biosystems Analyst software. The data were

isotopically deconvoluted, and the lipids in each class were

quantified in comparison to the internal standards of that class,

because various molecular species within the same class ionize
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similarly [22]. The first and typically every 11th set of mass spectra

were acquired on the internal standard mixture only. Peaks

corresponding to the target lipids in these spectra were identified

and molar amounts calculated in comparison to the internal

standards on the same lipid class. To correct for chemical or

instrumental noise in the samples, the molar amount of each lipid

metabolite detected in the ‘‘internal standards only’’ spectra was

subtracted from the molar amount of each metabolite calculated in

each set of sample spectra. The data from each ‘‘internal standards

only’’ set of spectra was used to correct the data from the following

10 samples. Finally, the data were corrected for the fraction of the

sample analyzed and normalized to the sample volume to produce

data in the unit of nmol/ml.

Strategies used in Selection of Lipid Biomarkers
Two strategies were used in selecting individual apparent lipid

species biomarkers from hundreds of detected species. The first

strategy was filtration. To narrow the number of potential

candidates from 390 apparent lipid species, the species that

cannot be clinically used in diagnosis of prostate cancer were

filtered, due to too low concentration to detect, insignificant

difference between patient and control groups, or too closed levels

of plasma concentrations in two groups (although the difference

may be statistically significant) to interpret. Criteria for retention

were: 1) difference in mean plasma lipid concentration is highly

significant (p,0.01) between patient and control groups; 2)

changes in mean plasma lipid concentration is .2-fold (up or

down); and 3) mean plasma lipid concentration is .10 nmol/ml.

Apparent lipid species that fulfilled all three criteria were selected

as potential candidates of plasma lipid biomarkers. The second

strategy provided additional differentiation of cancer and control

samples, in order to demonstrate that the selected candidates are

not only clinically useful and applicable, but also they are highly

sensitive, specific and accurate in differentiation of prostate cancer

from controls. After analysis with bioinformatics methods, any

apparent lipid species of selected potential candidates will be

selected as individual plasma lipid biomarker in diagnosis of

prostate cancer, if it met these criteria: 1) sensitivity above 80%; 2)

specificity above 50%; 3) all of Precision, Recall, F-measurement

and Area under (ROC) curve above 80%.

Software and Programs Used in Statistical and
Bioinformatics Analysis

The T-Test in SPSS18 software was used to compare mean

plasma concentrations of 390 apparent lipid species between

control and patient groups. The significant p value was set at 0.01

in filtration procedures. The T-Test was also used in comparison

of mean ages between control and patient groups. The significant

p value was set at 0.05.

GenSpring11, Gim2 and Windows Paint software and pro-

grams were used to perform and graph charts of Principal

Component Analysis (PCA) and Hierarchical Clustering Analysis

(HCA).

Weka 3.73 version software was used in bioinformatics analysis:

Simple logistics classification algorithm and InfoGain, a supervised

attribute ranking method were used to rank individual apparent

lipid species and lipid class according to their predictive powers in

differentiation of patients with prostate cancer from the controls;

RandomForest classification algorithm and 10-fold cross valida-

tion were used to estimate the performance of a predictive model.

For ‘‘unknown prediction’’, models were established in a training

set, which contained populations with ‘‘known features’’, such as

white patient. All subjects within the same ‘‘known feature’’, such

as white patient, were randomly grouped (10 iterations in this

study). The predictive powers were repeatedly cross validated

among 10 iterations. The program determined average predictive

power, which indicated if a satisfactory model was established in

the training set. Then the satisfactory model with each ‘‘known

feature’’ was used to predict (to validate) predictive power in

subjects with each mirrored ‘‘unknown feature’’, such as black

patient, in the test set. Higher predictive power in the training set

indicates smaller variances among 10 randomly grouped iterations

with ‘‘known feature’’. Higher predictive powers in the test set

suggest a smaller variance between the paired ‘‘known’’ and

‘‘unknown’’ populations.

Chi-Square test in SPSS 18 software was used to compare the

distribution of controls and patients between the first half (top

portion) and the second half (bottom portion) with higher plasma

lipid concentrations in Figure S1. Chi-Square test was also used to

compare the ratios of Black to White, biopsy to prostatectomy,

high and low grade of prostate cancer between the first and second

halves. The significant p value was set at 0.05 for all results from

Chi-Square tests.

Ethics
This study was approved by the Institutional Review Board at

the University of Mississippi Medical Center as an exempt

investigation, in which obtaining consent from participants was

not required, because all of obtained specimens used in this study

were pre-collected by other organizations. The protocols for

sample collection had been approved by their Institutional Review

Boards. Patients had given their written consent before donation of

plasma samples. In this study, no identifiable information, such as

patient’s name, birth date or contact information was known or

used.

Results

Demographics of Subjects
The entire study included 141 subjects including 105 patients

with prostate cancer and 36 male controls. Among the patients, 61

(58.1%) were Caucasian (‘‘white’’), 42 (40%) were African

American (‘‘black’’); and 2 were of unknown ethnic origins.

Among the 36 controls, 24 (66.7%) were Caucasian and 12

(33.3%) were African American. There was no difference in racial

ratio between patient and control groups (p = 0.55), although there

were significantly more Caucasians than African Americans in the

entire study (85 Caucasians, and 54 African Americans,

p = 0.0022). The average age at time of sample collection was

63.668.5 for patients and 57.5615.3 for controls (p = 0.0032).

Information on Gleason grade was available for 100 out of 105

patients: 2 patients had Gleason score of 5, 55 had Gleason score

of 6, 35 had Gleason score of 7, and 8 had Gleason score above 7.

Thus, 90% of patients had Gleason score of 6 or 7. Information on

other clinical conditions that might influence lipid metabolism

such as hyperlipidemia, diabetes, other malignancies and medica-

tions was not available for patients. Clinical information for 36

male controls was as following: 10 patients had their wellness

check and denied significantly clinical manifestations; 14 had

hypertension; 6 had osteoarthritis; and 1 to 2 patients had a history

of one or more of following: hyperlipidemia, back pain, obesity,

diabetes, Gout, bipolar disorder, seizure, or gastroesophageal

reflux disease. None had a history of cancer including prostate

cancer. The mean serum PSA level for controls was 0.85 ng/ml.

Lipid Profiling of 390 Apparent Lipid Species
Plasma lipid profiles including 390 individual apparent lipid

species from 13 classes of phospholipids and cholesteryl-esters (CE)
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were determined by lipidomics for 141 plasma samples (105 from

patients and 36 from controls). The most significant difference in

mean plasma concentration between patient and control groups

was found in lysophosphatidylcholine (LPC) with the fatty acyl

chain 22:6 [LPC(22:6)] (p = 1.75610220). The highest mean

plasma concentration of a cholesteryl-ester species was CE(18:2)

(11.564.36 nmol/ml in patients, 10.9964.8 nmol/ml in controls,

p = 0.144). The highest mean plasma concentration of a polar lipid

species was PC(34:2) (0.9460.41 nmol/ml in patients,

0.5860.17 nmol/ml in controls, p = 0.00115). The significant fold

change in mean plasma concentration of these apparent lipid

species between patient and control groups ranged from positive

22.7-fold for dihydrosphingomyelin (DSM) with 16:0

[(DSM(16:0)] (p = 3.85610219) to negative 20.8-fold for PC(30:1)

(p = 9.58610204). The complete list of mean plasma concentra-

tions in patient and control groups, p values and fold changes

between patient and control groups for each of 390 species is

provided in Table S1.

Identification of Individual Apparent Lipid Species as
Biomarker

According to the criteria described in the Patients and Methods

section, 335 out of 390 species were removed by the first strategy,

filtration. Only 35 apparent lipid species were selected as potential

candidates of lipid biomarkers for diagnosis of prostate cancer

(Table 1). For these 35 selected apparent lipid species, the

difference in mean plasma concentration between patient and

control groups was highly significant (p,0.01), the change in

mean plasma concentration (increase or decrease) between patient

and control groups was $2 fold, and the mean plasma

concentration was $10 pmol/ml (15 times the detection cut-off

value in either patients, controls, or both). The second strategy

provided additional differentiation of cancer and control samples

by demonstrating whether each of 35 candidates had enough

predictive power in diagnosis of prostate cancer. Using bioinfor-

matic methods, the 35 candidates were ranked as top 1 through

top 35 according to their InfoGain values. Only 12 out of 35

potential candidates were identified as individual plasma lipid

biomarkers, because each of these 12 identified apparent lipid

species fulfilled all of criteria: sensitivity (true positive) above 80%,

specificity (1-true false positive) above 50% and all of Precision,

Recall, F-measurement and Area under (ROC) curve above 80%

in differentiation of patients with prostate cancer from controls (as

bolded and italic in Table 1).

Identification of Lipid Classes as Biomarkers
The detected 390 individual plasma apparent lipid species

belonged to 12 classes of phospholipids and one group of

cholesteryl esters. The concentration for each lipid class was

calculated by adding all of measured individual species in that

class. As shown in Table 2, all lipid classes had increased plasma

concentrations in patients as compared to controls except

phosphatidic acid (PA), which had a significantly decreased

plasma concentration in patients. LPC was the only lipid class,

within which every detected individual apparent lipid species had

a significantly elevated plasma concentration in patient group as

compared to control group (details not shown). In the rest of the

lipid classes, some apparent lipid species were up, while others

were down in their plasma concentration in patients vs. controls.

The differences in plasma lipid concentrations between patients

and controls were statistically significant in the majority of lipid

classes except lysophosphatidylethanolamine (LPE) and phospha-

tidylserine (PS). However, when the same criteria used in selection

of biomarkers from individual apparent lipid species were applied

to the lipid classes, only the lipid classes PE, ePE and ePC could be

considered to be biomarkers in diagnosis of prostate cancer. Using

lipid classes as biomarkers for diagnosis of prostate cancer is not an

ideal choice, because potentially useful information is lost by

arbitrarily combining measured values (based on lipid class

assignment) for individual apparent lipid species.

Effect of Grouping Multiple Biomarkers on Diagnosis of
Prostate Cancer

To demonstrate if using more lipid biomarkers together within

35 candidates is able to increase the predictive power for diagnosis

of prostate cancer, seven groups of apparent lipid species with

different numbers of candidates were manually grouped: top 5 (top

1 through 5, 5 candidates together), 10 (top 1 through 10, 10

candidates together, etc.), 15, 20, 25, 30 and 35 (all of 35

candidates together). The results show that in any manually

assembled group with more lipid markers together had higher

sensitivity, specificity and accuracy in diagnosis of prostate cancer

as compared to any of individual lipid biomarkers. Among these

manually assembled groups, the group of 15 (top 1 through top15,

15 biomarkers together) was the best combination with the

strongest predictive powers in diagnosis of prostate cancer: it had

the highest sensitivity (93.6%), the highest specificity (90.1%),

higher accuracy (97.3%) as shown in Figure 1, and the highest

Precision, Recall and F-Measure (93.7%, 93.6% and 93.6%,

respectively, data not shown in Figure 1).

To potentially reduce the number of biomarkers to facilitate

practical incorporation into the workflow of clinical laboratories

and to make the results most amenable to interpretation by

clinicians, bioinformatics analyses were performed on the various

combinations from two lipid biomarkers together (top 2) through

15 lipid biomarkers together (top 15) as shown in Table 3. As an

example, if top three lipid biomarkers, LPC(18:1), LPC(20:4) and

PC(40:7) (Top 3) were used together, the combination would

provide a sensitivity of 91.5%, specificity of 84.3% and accuracy

(ROC Area) of 95.9% in differentiating patients with prostate

cancer from male controls. Grouping lipid classes, as opposed to

individual species, also increased sensitivity, specificity, and

accuracy in diagnosis of prostate cancer as compared to any

single lipid class. For example, the top 2 classes of lipids (class LPC

and PE) together had a sensitivity of 88.7%, a specificity of 81.5%

and an accuracy of 94.4% (data not shown). However, the

predictive powers from grouping more lipid classes were lower

than from grouping multiple individual plasma apparent lipid

species.

Characteristics of Identified Plasma Lipid Biomarkers
Because using top 15 lipid biomarkers together had the best

predictive power in diagnosis of prostate cancer, the characteristics

in this group of apparent lipid species were further analyzed.

Principal components analysis (PCA) was performed to examine

the ability to separate patient and control subjects with lipid

profiles of all 390 and the selected 15 apparent lipid species.

Performing PCA with lipid profiles of 390 apparent lipid species,

patient and control subjects were visually separated along the first

component in PCA, which accounted for 28.3% of the overall

variance (Figure 2, A). However, when PCA was performed with

lipid profiles of the selected 15 apparent lipid species, the first

component, along which patient and control samples were

separated, accounted for 86.9% of the overall variance in the

data (Figure 2, B). This indicates that much more variations in

these top 15 apparent lipid species are associated with the

classification of patient or control. In addition, positions of control

subjects were spatially closer than those of patient subjects when
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either set of data was plotted, suggesting that variances in mean

plasma lipid concentration (here transformed to uncorrelated

values of space distances) in the control group were much smaller

than those in the patient group.

Hierarchical cluster analysis (HCA) is a statistical method for

finding relatively homogeneous clusters of cases based on

measured characteristics. We applied HCA combining dendro-

grams and a heatmap to cluster both entity (15 apparent lipid

species) and condition (141 subjects) with panels of characteristics

at the left side in Figure S1. The HCA analysis showed that 15

apparent lipid species were patterned into 4 clusters: DSM(16:0),

ether-linked phosphatidylcholines (ePCs), sphingomyelins (SMs)

and LPCs. The 15 top ranking apparent lipid species had a

tendency of gradually increasing mean plasma lipid concentration

from top (lower concentration, in blue) to bottom (higher

concentration, in red). To further analyze the data, the subjects

in the heatmap were divided into two halves: the first half

containing 70 subjects with lower plasma lipid concentration, and

the second half containing 71 subjects with higher plasma lipid

concentration. The analyzed results, as shown in Table 4,

indicated that there is a dramatically high Odds Ratio in the

presence of control and patient subjects between the first and

second half (p,0.0001, OR = 70.0). Interestingly, patient subjects

diagnosed by biopsies were significantly enriched in the second

Table 1. Top 35 individual plasma apparent lipid species as candidate biomarkers for prostate cancer (Concentration: pmol/ml).

Lipid Patients (105) Control (36) P/C p Predictive Values (%)

Species* Rank Mean SD Mean SD Fold value Sens. Spec. Prec. Recall F-meas. AUC

LPC(18:1) 1 43.4 22.8 15.8 6.2 2.7 2.63E-09 80.4 60.6 79.5 80.4 79.9 87.4

LPC(20:4) 2 14.6 9.4 4.6 2.0 3.2 1.71E-15 88.7 79.7 88.5 88.7 88.5 93.3

PC(40:7) 3 16.9 10.0 7.6 3.0 2.2 4.37E-11 86.5 68.0 86.3 86.5 85.6 89.8

LPC(18:0) 4 74.6 39.7 30.3 10.7 2.5 3.00E-08 80.9 56.9 79.6 80.9 79.3 87.9

LPC(16:0) 5 240.3 121.4 85.0 38.8 2.8 2.03E-06 70.3 40.8 68.1 70.3 69.0 64.1

ePC(38:4) 6 27.7 14.0 13.0 5.0 2.1 3.01E-08 82.3 66.5 81.6 82.3 81.8 87.8

PC(38:4) 7 380.9 200.1 181.5 72.4 2.1 3.65E-05 80.9 55.1 79.7 80.9 79.0 85.4

PC(38:5) 8 136.0 68.1 61.0 23.3 2.2 8.50E-06 81.6 60.8 80.5 81.6 80.5 84.3

SM(18:1) 9 67.9 45.2 22.8 14.5 3.0 1.05E-09 81.2 44.2 81.3 81.2 77.3 77.8

SM(16:1) 10 76.6 45.0 30.3 16.8 2.5 6.71E-09 81.2 50.4 79.8 81.2 78.8 81.0

DSM(16:0) 11 12.2 12.0 0.5 0.8 22.7 3.85E-19 74.5 25.5 55.5 74.5 63.6 50.0

SM(16:0) 12 494.9 276.2 200.9 97.3 2.5 1.20E-06 80.1 51.2 79.0 80.1 77.6 83.4

ePC(36:1) 13 13.3 8.9 5.5 2.0 2.4 6.30E-10 76.6 48.2 74.2 76.6 74.3 83.5

SM(18:0) 14 102.6 62.1 36.8 26.1 2.8 1.72E-06 80.9 56.9 79.6 80.9 79.3 80.3

ePC(36:2) 15 25.4 12.3 12.6 4.9 2.0 1.72E-07 87.1 78.6 87.1 87.1 87.1 91.8

C19:2 CE 16 28.0 32.3 3.1 7.8 9.0 9.94E-14 73.0 54.3 72.6 73.0 72.8 74.4

ePC(38:1) 17 10.3 6.7 4.2 1.8 2.5 4.14E-11 73.8 30.8 67.1 73.8 66.5 81.9

LPC(18:2) 18 61.7 35.2 28.0 13.5 2.2 1.26E-06 80.4 52.3 78.7 80.4 78.6 87.9

PC(34:1) 19 343.5 193.7 164.0 71.4 2.1 1.84E-04 73.8 39.9 69.7 73.8 70.1 82.5

SM(24:0) 20 89.3 53.8 31.8 25.1 2.8 3.78E-06 78.0 52.3 76.1 78.0 76.2 82.7

PE(36:2) 21 18.4 14.0 7.8 5.2 2.4 3.93E-09 78.7 47.1 77.1 78.7 75.6 82.8

C19:3 CE 22 37.9 62.2 3.7 7.4 10.3 8.31E-11 74.5 25.5 55.5 74.5 63.6 50.0

C20:1 CE 23 22.1 25.8 7.6 12.1 2.9 3.02E-07 74.5 25.5 55.5 74.5 63.6 50.0

C20:0 CE 24 56.8 104.6 14.5 47.4 3.9 6.50E-07 74.5 25.5 55.5 74.5 63.6 50.0

PC(36:1) 25 64.4 43.3 31.4 23.6 2.1 8.42E-05 75.2 33.1 71.3 75.2 68.3 67.3

C18:0 CE 26 42.5 38.8 17.5 26.5 2.4 6.45E-04 67.4 23.1 54.0 67.4 60.0 41.9

PC(30:1) 27 0.7 5.0 14.3 18.7 220.9 9.58E-04 80.1 45.7 80.7 80.1 76.2 61.9

SM(22:0) 28 16.9 44.0 63.0 78.6 23.7 5.51E-04 77.3 46.6 74.9 77.3 74.4 63.0

C21:3 CE 29 28.6 39.6 9.7 16.6 3.0 3.53E-06 74.5 25.5 55.5 74.5 63.6 50.0

C19:1 CE 30 207.9 232.1 72.4 120.3 2.9 1.60E-05 74.5 25.5 55.5 74.5 63.6 51.0

C17:0 CE 31 23.9 29.3 7.2 10.4 3.3 4.19E-05 74.5 25.5 55.5 74.5 63.6 50.0

C17:1 CE 32 16.9 17.3 6.5 10.6 2.6 1.17E-04 74.5 25.5 55.5 74.5 63.6 50.0

C14:0 CE 33 43.5 45.4 20.6 31.8 2.1 5.16E-03 74.5 25.5 55.5 74.5 63.6 50.0

C19:0 CE 34 73.3 99.2 24.9 38.9 2.9 1.80E-04 74.5 25.5 55.5 74.5 63.6 50.0

C22:5 CE 35 30.4 40.4 14.0 17.1 2.2 2.15E-03 74.5 25.5 55.5 74.5 63.6 50.0

*Apparent lipid species identities are based on the mass/charge ratio of the intact lipid ion and one characteristic fragment. Sens. = Sensitivity, Spec. = Specificity,
Prec. = Precision, F-Meas. = F-measure.
doi:10.1371/journal.pone.0048889.t001
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half as compared with those diagnosed by prostatectomies. When

the subjects were stratified by age, race and Gleason grade of

patients with prostate cancer, it showed that the second half

(higher concentrations of individual apparent lipid species) had

more black patients, especially black patients with old age, as

compared with the first half. Cancer grade and overall age were

not significantly different between two halves.

Table 2. Lipid classes in differentiation of prostate cancer (Concentration: nmol/ml).

Lipid Patients (105) Controls (36) P/C p Predictive values (%)

Class Rank Mean SEM Mean SEM fold value Sens. Spec. Prec. Recall F-meas. AUC

LPC 1 0.45 0.02 0.17 0.01 2.7 1.08E-11 74.5 25.5 55.5 74.5 63.6 49.3

PE 2 0.11 0.01 0.04 0.00 2.5 1.09E-08 83.7 59.7 83.3 83.7 82.1 85.3

ePE 3 0.02 0.00 0.01 0.00 2.5 1.93E-07 80.9 53.3 79.9 80.9 78.6 82.7

SM 4 1.24 0.07 0.57 0.03 2.2 5.73E-08 79.4 58.3 78.1 79.4 78.4 86.4

ePC 5 0.32 0.01 0.16 0.01 2.0 6.87E-10 81.6 59.0 80.5 81.6 80.2 89.1

LPE 6 0.01 0.00 0.01 0.00 1.2 4.87E-01 74.5 25.5 55.5 74.5 63.6 49.3

PC 7 3.69 0.15 1.94 0.10 1.9 4.23E-10 80.1 58.5 78.9 80.1 79.0 88.9

PA 8 0.00 0.00 0.00 0.00 21.5 1.01E-02 75.2 29.4 73.1 75.2 66.4 53.9

PE-Cer 9 0.00 0.00 0.00 0.00 3.3 2.21E-06 75.9 46.1 73.1 75.9 73.3 83.0

CE 10 18.36 0.63 13.67 1.15 1.3 3.16E-04 76.6 35.4 75.5 76.6 70.1 61.7

PI 11 0.15 0.01 0.09 0.01 1.6 2.88E-05 76.6 40.9 73.9 76.6 72.3 72.2

ePS 12 0.00 0.00 0.00 0.00 2.3 3.40E-02 74.5 25.5 55.5 74.5 63.6 50.0

PS 13 0.00 0.00 0.00 0.00 1.2 6.34E-01 74.5 25.5 55.5 74.5 63.6 50.0

Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision, F-Meas. = F-measure.
doi:10.1371/journal.pone.0048889.t002

Figure 1. Effect of multiple individual lipid species in diagnosis of prostate cancer. The points indicated by the two head arrows are the
predictive powers of top 15 plasma apparent lipid species when they are used together in diagnosis of prostate cancer. Using top 15 plasma
apparent lipid species has the highest sensitivity (93.6%), the highest specificity (90.1%), and higher accuracy (ROC Area, 97.3%) in the diagnosis of
prostate cancer as compared with using any other combination of different numbers.
doi:10.1371/journal.pone.0048889.g001
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It is unclear whether imbalanced compositions of race and age

in this study cohort influenced the predictive power of the selected

15 apparent lipid species in diagnosis of prostate cancer. To clarify

this issue, an ‘‘unknown prediction’’ method was applied. The

results of unknown prediction are shown in Table 5. Using

RandomForrest and 10-fold cross validation programs, satisfactory

models in the training set were demonstrated by their high

predictive powers in each group of subjects with a ‘‘known

feature’’, such as ‘‘white patient or control’’, ‘‘young patient or

control’’, and in ‘‘random group 1’’ subjects. These results

suggested that variability within any out of 10 iterations of

subjects with a ‘‘known feature’’ did not affect the predictive

powers of other iterations. Each group of subjects with a

corresponding ‘‘unknown feature’’, such as ‘‘black patient or

control’’, ‘‘old patient or control’’, and in ‘‘random group 2’’

subjects in the test set, was cross validated by its corresponding

established model in the training set. Similarities in high predictive

powers in each set of paired groups indicated that the variability

between the paired features (known and unknown), such as white

vs. black, young vs. old and random group 1 subjects vs. random

group 2 subjects, did not affect the selected 15 selected lipid

biomarkers in differentiation of patients with prostate cancer from

controls. Thus, imbalance of age and race between patient and

control groups did not affect the ability of the selected 15 lipid

biomarkers to differentiate patients from controls in this study

cohort.

Among the 355 un-selected apparent lipid species, 43 (12.11%)

of the lipid molecules contained saturated fatty acid chains only

(no unsaturated fatty acid chains). While within the 35 selected

apparent lipid species, 12 (34.3%) lipid molecules contain

saturated fatty acid chains only. The difference in percentage of

apparent lipid species containing saturated fatty acid only was

highly significant between the selected 35 candidates and those un-

selected apparent lipid species (p,0.001, diagnostic odds ratio was

Table 3. Comparison of predictive powers among groups with different numbers of identified plasma lipid biomarkers.

Numbers of Predictive values (%)

Biomarkers Sensitivity Specificity Precision Recall F-measure ROC Area

Top2 87.9 83.1 88.3 87.9 88.1 94.0

Top3 91.5 84.3 91.4 91.5 91.4 95.9

Top4 90.1 82.0 89.9 90.1 90.0 95.0

Top5 90.8 85.9 90.9 90.8 90.8 96.3

Top6 89.4 83.6 89.5 89.4 89.4 95.7

Top7 90.1 82.0 89.9 90.1 90.0 95.6

Top8 90.1 83.8 90.1 90.1 90.1 96.1

Top9 91.5 86.1 91.5 91.5 91.5 96.5

Top10 91.5 86.1 91.5 91.5 91.5 96.5

Top11 92.2 88.2 92.3 92.2 92.2 97.3

Top12 92.9 90.3 93.1 92.9 93.0 97.5

Top13 92.2 88.2 92.3 92.2 92.2 97.2

Top14 92.2 88.2 92.3 92.2 92.2 97.3

Top15 93.6 90.5 93.7 93.6 93.6 97.3

doi:10.1371/journal.pone.0048889.t003

Figure 2. Comparison of Principal Component Analysis (PCA) with 390 and 15 selected plasma apparent lipid species. A: The first
component in PCA cross all 390 detected plasma apparent lipid species accounts for 28.3% of the overall variance; B: The first component in PCA
cross 15 selected plasma apparent lipid biomarkers accounts for 86.9% of the overall variance.
doi:10.1371/journal.pone.0048889.g002
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3.79 with a 95% confidence interval of 1.64–8.67). These results

suggested that the apparent lipid species with only saturated fatty

acids chain only might play certain roles in pathogenesis of

prostate cancer.

The mass spectra of top 15 apparent lipid species in

representative patient and control samples are shown in Figure 3.

Identified lipid species were exclusively phosphocholine-containing

phospholipids, including 3 ePCs, 3 PCs, 4 LPCs and 5 SM/DSMs.

Discussion

In clinical practice, PSA is the most commonly used biomarker

for prostate cancer. However there is a substantial overlap in

serum PSA level between patients with and without prostate

cancer. No single PSA cutoff value can satisfactorily provide a

simultaneously higher sensitivity and specificity in diagnosis of

prostate cancer. Taking an example, one study showed that a PSA

cutoff value of 1.1 ng/ml had a sensitivity of 83.4% with a

specificity of 38.9%; that of 4.1 ng/ml had a sensitivity of 20.5%

with a specificity of 93.8%; and the area under (ROC) curve was

68.2% [41–42]. Other newly reported biomarkers have been less

systemically studied for their sensitivity, specificity and accuracy in

diagnosis of prostate cancer. As compared to PSA, plasma lipid

biomarkers identified in this study had much higher sensitivity,

specificity and accuracy simultaneously in diagnosis of prostate

cancer. It is especially true when multiple lipid markers were used

together. For example, using the top 3 plasma lipid biomarkers

together achieved a much higher predictive values in differenti-

ation of prostate cancers from controls as compared to PSA. Of

course, further investigations are needed to demonstrate if there

are overestimations of sensitivity, specificity and accuracy due to

the feature selections used in this pilot study.

Human plasma contains thousands of distinct lipid species.

Although normal ranges of some lipid species have been

determined in plasma [43–44], the majority have not. Recently,

standard reference values for 500 plasma lipid molecules were

produced by lipidomics on plasma samples pooled and blended

from 100 healthy American people [23]. Many apparent lipid

species in our study overlapped with those. Although some

discrepancies were noted, comparison of mean plasma concen-

tration of the apparent lipid species detected in both studies

indicated that many values were extremely close, including several

that we identified as individual lipid biomarkers for prostate cancer

Table 4. Comparison of subject distributions and patient characteristics between upper and lower halves in the cluster of top 15
apparent lipid species.

The first half The second half p value OR 95% C.I.

Total Controls (36) 35 1

Total Patients (105) 35 70 ,0.0001 70 9.6–1430.5

Patient Characteristics

Ratio of Black to White 0.40 0.84 0.09 0.48 0.18–1.20

Ratio of biopsy to prostatectomy 0.93 4.15 0.0007 4.75 1.69–13.59

Ratio of high to low grade Pca 0.67 0.50 0.65 0.75 0.28–1.99

Patient age year-old (mean±SD) 62.8611.3 6367.92 0.92

Ratio of Black:White in young patients 0.75 0.78 0.31 2.16 0.47–10.02

Ratio of Black:White in old patients 0.27 0.93 0.07 0.92 0.06–1.30

doi:10.1371/journal.pone.0048889.t004

Table 5. Comparison of predictive values (%) of the top 15 plasma lipid biomarkers in diagnosis of prostate cancer in training set
and testing set.

Predict Group Predictive values (%) in training set Predictive values (%) in testing set

Category Sens. Spec. Prec. Recall F-m. AUC Sens. Spec. Prec. Recall F-m. AUC

White Patient 95.1 95.8 98.3 95.1 96.7 97.3 95.2 91.7 97.6 95.2 96.4 97.0

predict Control 95.8 95.1 88.5 95.8 92.0 97.3 91.7 95.2 84.6 91.7 88.0 97.0

black Weighted
average

95.3 95.6 95.5 95.3 95.3 97.3 94.4 92.5 94.7 94.4 94.5 97.0

Young Patient 96.5 86.4 94.8 96.5 95.7 97.6 93.8 78.6 93.8 93.8 93.8 96.9

predict Control 86.4 96.5 90.5 86.4 88.4 97.6 78.6 93.7 78.6 78.6 78.6 96.9

old Weighted
average

93.7 89.2 93.6 93.7 93.6 97.6 90.3 82.0 90.3 90.3 90.3 96.9

Group1 Patient 92.9 86.4 95.6 92.9 94.2 95.6 94.3 85.7 94.3 94.3 94.3 94.1

predict Control 86.4 92.9 79.2 86.4 82.6 95.6 85.7 94.3 85.7 85.7 85.7 94.1

group 2 Weighted
average

91.3 87.9 91.7 91.3 91.4 95.6 91.8 88.2 91.8 91.8 91.8 94.1

Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision, F-m. = F-measure, AUC = Area under (ROC) curve.
doi:10.1371/journal.pone.0048889.t005
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in our study. For example, LPC(18:1), which was ranked as top 1

plasma lipid biomarker in our study, mean plasma concentration

was 14.8 nmol/ml in the referenced study and 15.82 pmol/ml (i.e.

nmol/ml) in the control group of our study. Similarly in

LPC(20:4), the second top plasma lipid biomarker in our study,

mean plasma concentration was 5.37 nmol/ml in the referenced

study, and 4.61 pmol/ml in the control group of our study. The

reason for some discrepancies between two studies is unclear. In

addition to the great variability in individual subject and lipid

species, other possible reasons for these discrepancies could be the

bias between different detecting centers, or biochemical interac-

tions occurred in repeated freezing-thawing process in the

referenced study, or the smaller sample size of the control group

in our study. It is desirable to establish an international standard

reference values with normal ranges for all plasma lipid species to

meet with the increasing demand in lipid research and clinical

practice.

Univariate analysis of one apparent lipid species is unlikely to be

sufficient to discriminate prostate cancer patients from controls

because of considerable variation of plasma lipid concentrations. A

combination of multiple plasma lipid biomarkers with multivariate

analysis and various classification algorithms was demonstrated

herein to have enhanced predictive power in the diagnosis of

prostate cancer in our study. A similar effect was reported by

Landers et al [45], who found that combined 4 gene markers

greatly increased sensitivity in discriminating prostate cancer from

benign prostatic hyperplasia (BPH), and by Petricoin et al [46],

who applied a genetic algorithm and clustering analysis to abstract

discriminatory patterns of proteomics data from thousands of

protein and peptide molecules to separate ovarian cancers from

controls with a sensitivity of 100%, specificity of 95%, and positive

predictive value of 94%. Measurement of a panel of a few plasma

lipid molecules, for example 3 to 15 apparent lipid species may be

feasible in routine clinical laboratories. The test requires very small

amount of blood (3 ml of plasma), which can be obtained with

minimally invasive procedures. The test results could be obtained

within an hour. Together with all of these advantages of lipidomic

technology, a new diagnostic model based on statistical and

bioinformatic analysis with high predictive values could be used in

diagnosis of prostate cancer in the near future. This study, once

validated prospectively in our ongoing study, or confirmed by

other researchers, potentially will have a revolutionary impact on

diagnosis and study of the pathogenesis of prostate cancer, and

other diseases.

Overall, patients with prostate cancer had increased plasma

lipid concentrations in all lipid classes except PA, which was

significantly lower in patients with prostate cancer. This imbalance

in plasma concentrations among lipid classes could be caused by

increased synthesis of other phospholipids in prostate cancer

resulting in over-consumption of PA, because PA is the precursor

for synthesis of many other phospholipids [47]. It is unclear why

the plasma concentrations of individual lipid species in same lipid

class were greatly varied: some increased and others decreased in

the patients. One possible mechanism for this imbalance is that

prostate cancer cells regulate the enzymes that control lipid

metabolic pathways of not only synthesizing but also remodeling

phospholipids. The expression level of one of these enzymes,

lysophosphatidylcholine acyltransferase 1 (LPCAT1), a key

enzyme in Lands’ cycle remodeling pathway, correlated with the

progression of prostate cancer [48]. We also found that nuclear

translocation of soluble phospholipase A2 (sPLA2) was up-

regulated in prostate cancer tissues as compared with benign

prostatic tissues (unpublished), but it is not clear whether the

nuclear translocation of sPLA2 is associated with remodeling of

phospholipid. The fact that all identified top 15 apparent lipid

species were species containing phosphocholine is very intriguing.

This result might suggest up-regulation of phosphocholine

metabolism in patient with prostate cancer, and is consistent with

Figure 3. Mass spectra of phosphocholine-containing lipids (Pre-184 positive mode, including biomarker species. A: Spectra of 15
selected apparent lipid species in a representative patient with prostate cancer. B: Spectra of 15 selected apparent lipid species in a representative
male control. Spectral intensities were normalized to that of internal standard LPC(13:0). The intensities of phosphocholine-containing internal
standards (I.S.) are indicated in green. The intensities of the identified biomarkers are shown in red. Internal standards and biomarkers (15 selected
apparent lipid species) are labeled.
doi:10.1371/journal.pone.0048889.g003
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previous findings that high grade prostate cancer tissues had

higher concentration of phosphocholine as compared with low

grade prostate cancer [49].

This preliminary study has several limitations. First, more than

90% of plasma samples were obtained from prostate cancer

patients with a Gleason score of 6 or 7, which made it impossible

to correlate the identified plasma lipid biomarkers with the severity

of the prostate cancer, as well as to the patients with metastasis or

benign changes. Second, due to incomplete information on the

patients’ serum PSA level at the time of samples’ collection, and to

the lack of information on patients’ outcomes, we were unable to

compare the predictive power of the identified lipid biomarkers

with that of PSA in the same study cohort. Therefore, at this point,

the identified plasma apparent lipid species might serve as

diagnostic biomarkers only, but not as prognostic and screening

biomarkers. As well, the specificity of these identified lipid

biomarkers has not been tested for other cancers and metabolic

disorders. Even if there are limitations in the study, it is a

pioneering work, exploring a new approach to seeking biomarkers

for prostate cancer and other diseases.

Supporting Information

Figure S1 Hierachical Cluster Analysis (HCA) based on 15
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