143 research outputs found
Uncoupling fork speed and origin activity to identify the primary cause of replicative stress phenotypes
In growing cells, DNA replication precedes mitotic cell division to transmit genetic information to the next generation. The slowing or stalling of DNA replication forks at natural or exogenous obstacles causes "replicative stress" that promotes genomic instability and affects cellular fitness. Replicative stress phenotypes can be characterized at the single-molecule level with DNA combing or stretched DNA fibers, but interpreting the results obtained with these approaches is complicated by the fact that the speed of replication forks is connected to the frequency of origin activation. Primary alterations in fork speed trigger secondary responses in origins, and, conversely, primary alterations in the number of active origins induce compensatory changes in fork speed. Here, by employing interventions that temporally restrict either fork speed or origin firing while still allowing interrogation of the other variable, we report a set of experimental conditions to separate cause and effect in any manipulation that affects DNA replication dynamics. Using HeLa cells and chemical inhibition of origin activity (through a CDC7 kinase inhibitor) and of DNA synthesis (via the DNA polymerase inhibitor aphidicolin), we found that primary effects of replicative stress on velocity of replisomes (fork rate) can be readily distinguished from primary effects on origin firing. Identifying the primary cause of replicative stress in each case as demonstrated here may facilitate the design of methods to counteract replication stress in primary cells or to enhance it in cancer cells to increase their susceptibility to therapies that target DNA repair.The DNA Replication Group is part of the BFU2016-81796-REDC network of excellence. We thank all members
of the group for discussions and Dr. Oscar FernĂĄndez-Capetillo and Dr. Ana Losada for useful comments on the manuscriptS
RAD51 restricts DNA over-replication from re-activated origins
Eukaryotic cells rely on several mechanisms to ensure that the genome is duplicated precisely once in each cell division cycle, preventing DNA over-replication and genomic instability. Most of these mechanisms limit the activity of origin licensing proteins to prevent the reactivation of origins that have already been used. Here, we have investigated whether additional controls restrict the extension of re-replicated DNA in the event of origin re-activation. In a genetic screening in cells forced to re-activate origins, we found that re-replication is limited by RAD51 and enhanced by FBH1, a RAD51 antagonist. In the presence of chromatin-bound RAD51, forks stemming from re-fired origins are slowed down, leading to frequent events of fork reversal. Eventual re-initiation of DNA synthesis mediated by PRIMPOL creates ssDNA gaps that facilitate the partial elimination of re-duplicated DNA by MRE11 exonuclease. In the absence of RAD51, these controls are abrogated and re-replication forks progress much longer than in normal conditions. Our study uncovers a safeguard mechanism to protect genome stability in the event of origin reactivation
Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality
Replicative stress during embryonic development influences ageing and
predisposition to disease in adults. A protective mechanism against
replicative stress is provided by the licensing of thousands of origins
in G1 that are not necessarily activated in the subsequent S-phase.
These `dormant' origins provide a backup in the presence of stalled
forks and may confer flexibility to the replication program in specific
cell types during differentiation, a role that has remained unexplored.
Here we show, using a mouse strain with hypomorphic expression of the
origin licensing factor mini-chromosome maintenance (MCM)3 that limiting
origin licensing in vivo affects the functionality of hematopoietic stem
cells and the differentiation of rapidly-dividing erythrocyte
precursors. Mcm3-deficient erythroblasts display aberrant DNA
replication patterns and fail to complete maturation, causing lethal
anemia. Our results indicate that hematopoietic progenitors are
particularly sensitive to replication stress, and full origin licensing
ensures their correct differentiation and functionality.We thank members of our laboratories for helpful discussions, Marcos
Malumbres (CNIO) for advice on the design of the Mcm3-Lox allele, Isabel
Blanco for her administrative help with mouse work and Soraya Ruiz for
excellent handling of the mouse colony in J.M.'s group. Research was
supported by the Spanish Ministry of Economy and Competitiveness (grants
BFU2013-49153-P and Consolider-Ingenio CSD2007-00015 to J.M.,
SAF2011-23753 to O.F.-C., BFU2012-35892 to J.I.) and RO1 HL092471 to
E.P., S.A. was the recipient of an EMBO short-term fellowship to visit
E.P.'s laboratory at UCSF. We are grateful to Manuel Serrano (CNIO),
Almudena Ramiro (CNIC) and Arkaitz Ibarra (The Salk Institute, USA) for
useful comments on the manuscript.S
Tethering of SCF<sup>Dia2</sup> to the replisome promotes efficient ubiquitylation and disassembly of the CMG helicase
SummaryDisassembly of the Cdc45-MCM-GINS (CMG) DNA helicase, which unwinds the parental DNA duplex at eukaryotic replication forks, is the key regulated step during replication termination but is poorly understood [1, 2]. In budding yeast, the F-box protein Dia2 drives ubiquitylation of the CMG helicase at the end of replication, leading to a disassembly pathway that requires the Cdc48 segregase [3]. The substrate-binding domain of Dia2 comprises leucine-rich repeats, but Dia2 also has a TPR domain at its amino terminus that interacts with the Ctf4 and Mrc1 subunits of the replisome progression complex [4, 5], which assembles around the CMG helicase at replication forks [6]. Previous studies suggested two disparate roles for the TPR domain of Dia2, either mediating replisome-specific degradation of Mrc1 and Ctf4 [4] or else tethering SCFDia2 (SCF [Skp1/cullin/F-box protein]) to the replisome to increase its local concentration at replication forks [5]. Here, we show that SCFDia2 does not mediate replisome-specific degradation of Mrc1 and Ctf4, either during normal S phase or in response to replication stress. Instead, the tethering of SCFDia2 to the replisome progression complex increases the efficiency of ubiquitylation of the Mcm7 subunit of CMG, both in vitro and in vivo. Correspondingly, loss of tethering reduces the efficiency of CMG disassembly in vivo and is synthetic lethal in combination with a disassembly-defective allele of CDC48. Residual ubiquitylation of Mcm7 in dia2-ÎTPR cells is still CMG specific, highlighting the complex regulation of the final stages of chromosome replication, about which much still remains to be learned
p62 Is Required for Stem Cell/Progenitor Retention through Inhibition of IKK/NF-kB/Ccl4 Signaling at the Bone Marrow Macrophage-Osteoblast Niche
In the bone marrow (BM), hematopoietic progenitors
(HPs) reside in specific anatomical niches near osteoblasts
(Obs), macrophages (MFs), and other cells forming the BM microenvironment. A connection between immunosurveillance and traffic of HP has been demonstrated, but the regulatory signals that instruct the immune regulation of HP circulation are unknown. We discovered that the BM microenvironment deficiency of p62, an autophagy regulator and signal organizer, results in loss of autophagic repression of macrophage contact-dependent activation of
Ob NF-kB signaling. Consequently, Ob p62-deficient
mice lose bone, Ob Ccl4 expression, and HP chemotaxis
toward Cxcl12, resulting in egress of short-term
hematopoietic stem cells and myeloid progenitors.
Finally, Ccl4 expression and myeloid progenitor
egress are reversed by deficiency of the p62 PB1-
binding partner Nbr1. A functional ââMF-Ob nicheââ
is required for myeloid progenitor/short-term stem
cell retention, in which Ob p62 is required to maintain
NF-kB signaling repression, osteogenesis, and BM
progenitor retention
A Neutrophil Timer Coordinates Immune Defense and Vascular Protection
Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection. Neutrophils display circadian oscillations in numbers and phenotype in the circulation. Adrover and colleagues now identify the molecular regulators of neutrophil aging and show that genetic disruption of this process has major consequences in immune cell trafficking, anti-microbial defense, and vascular health.This study was supported by Intramural grants from AâSTAR to L.G.N., BES-2013-065550 to J.M.A., BES-2010-032828 to M.C.-A, and JCI-2012-14147 to L.A.W (all from Ministerio de EconomĂa, Industria y Competitividad; MEIC). Additional MEIC grants were SAF2014-61993-EXP to C.L.-R.; SAF2015-68632-R to M.A.M. and SAF-2013-42920R and SAF2016-79040Rto D.S. D.S. also received 635122-PROCROP H2020 from the European Commission and ERC CoG 725091 from the European Research Council (ERC). ERC AdG 692511 PROVASC from the ERC and SFB1123-A1 from the Deutsche Forschungsgemeinschaft were given to C.W.; MHA VD1.2/81Z1600212 from the German Center for Cardiovascular Research (DZHK) was given to C.W. and O.S.; SFB1123-A6 was given to O.S.; SFB914-B08 was given to O.S. and C.W.; and INST 211/604-2, ZA 428/12-1, and ZA 428/13-1 were given to A.Z. This study was also supported by PI12/00494 from Fondo de Investigaciones Sanitarias (FIS) to C.M.; PI13/01979, Cardiovascular Network grant RD 12/0042/0054, and CIBERCV to B.I.; SAF2015-65607-R, SAF2013-49662-EXP, and PCIN-2014-103 from MEIC; and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) to A.H. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505)
A Neutrophil Timer Coordinates Immune Defense and Vascular Protection
Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.We thank all members of the Hidalgo Lab for discussion and insightful comments; J.M. Ligos, R. Nieto, and M. Viton for help with sorting and cytometric analyses; I. Ortega and E. Santos for animal husbandry; D. Rico, M.J. Gomez, C. Torroja, and F. Sanchez-Cabo for insightful comments and help with transcriptomic analyses; V. Labrador, E. Arza, A.M. Santos, and the Microscopy Unit of the CNIC for help with microscopy; S. Aznar-Benitah, U. Albrecht, Q.-J. Meng, B. Staels, and H. Duez for the generous gift of mice; J.A. Enriquez and J. Avila for scientific insights; and J.M. Garcia and A. Diez de la Cortina for art. This study was supported by Intramural grants from A* STAR to L.G.N., BES-2013-065550 to J.M.A., BES-2010-032828 to M.C.-A, and JCI-2012-14147 to L.A.W (all from Ministerio de Economia, Industria y Competitividad; MEIC). Additional MEIC grants were SAF2014-61993-EXP to C.L.-R.; SAF2015-68632-R to M.A.M. and SAF-2013-42920R and SAF2016-79040Rto D.S. D.S. also received 635122-PROCROP H2020 from the European Commission and ERC CoG 725091 from the European Research Council (ERC). ERC AdG 692511 PROVASC from the ERC and SFB1123-A1 from the Deutsche Forschungsgemeinschaft were given to C.W.; MHA VD1.2/81Z1600212 from the German Center for Cardiovascular Research (DZHK) was given to C.W. and O.S.; SFB1123-A6 was given to O.S.; SFB914-B08 was given to O.S. and C.W.; and INST 211/604-2, ZA 428/12-1, and ZA 428/13-1 were given to A.Z. This study was also supported by PI12/00494 from Fondo de Investigaciones Sanitarias (FIS) to C.M.; PI13/01979, Cardiovascular Network grant RD 12/0042/0054, and CIBERCV to B.I.; SAF2015-65607-R, SAF2013-49662-EXP, and PCIN-2014-103 from MEIC; and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) to A.H. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505).S
Mechanism of Cancer Cell Death Induced by Depletion of an Essential Replication Regulator
Background: Depletion of replication factors often causes cell death in cancer cells. Depletion of Cdc7, a kinase essential for initiation of DNA replication, induces cancer cell death regardless of its p53 status, but the precise pathways of cell death induction have not been characterized. Methodology/Principal Findings: We have used the recently-developed cell cycle indicator, Fucci, to precisely characterize the cell death process induced by Cdc7 depletion. We have also generated and utilized similar fluorescent cell cycle indicators using fusion with other cell cycle regulators to analyze modes of cell death in live cells in both p53-positive and-negative backgrounds. We show that distinct cell-cycle responses are induced in p53-positive and-negative cells by Cdc7 depletion. p53-negative cells predominantly arrest temporally in G2-phase, accumulating CyclinB1 and other mitotic regulators. Prolonged arrest at G2-phase and abrupt entry into aberrant M-phase in the presence of accumulated CyclinB1 are followed by cell death at the post-mitotic state. Abrogation of cytoplasmic CyclinB1 accumulation partially decreases cell death. The ATR-MK2 pathway is responsible for sequestration of CyclinB1 with 14-3-3s protein. In contrast, p53-positive cancer cells do not accumulate CyclinB1, but appear to die mostly through entry into aberrant S-phase after Cdc7 depletion. The combination of Cdc7 inhibition with known anti-cancer agents significantly stimulates cell death effects in cancer cells in a genotype-dependent manner, providing a strategic basis for future combination therapies
Altered adipocyte differentiation and unbalanced autophagy in type 2 Familial Partial Lipodystrophy: an in vitro and in vivo study of adipose tissue browning
Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the
limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is
involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown
adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of
differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet
formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1.
Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy,
formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In
agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage,
adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its
brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by
PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a
new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that
both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease.We thank FPLD2 patients for donating biological samples. We thank the Italian
Network for Laminopathies and the European Consortium of Lipodystrophies
(ECLip) for support and helpful discussion. We thank Aurelio Valmori for the
technical support. The studies were supported by Rizzoli Orthopedic Institute
â5 per milleâ 2014 project to MC, AIProSaB project 2016 and Fondazione Del
Monte di Bologna e Ravenna grant 2015â2016 âNew pharmacological
approaches in bone laminopathies based on the use of antibodies neutralizing
TGF beta 2â to GL. GL is also supported by PRIN MIUR project 2015FBNB5Y.S
- âŠ