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SUMMARY

Disassembly of the Cdc45-MCM-GINS (CMG) DNA
helicase, which unwinds the parental DNA duplex
at eukaryotic replication forks, is the key regu-
lated step during replication termination but is
poorly understood [1, 2]. In budding yeast, the
F-box protein Dia2 drives ubiquitylation of the
CMG helicase at the end of replication, leading to
a disassembly pathway that requires the Cdc48
segregase [3]. The substrate-binding domain of
Dia2 comprises leucine-rich repeats, but Dia2
also has a TPR domain at its amino terminus that
interacts with the Ctf4 and Mrc1 subunits of the re-
plisome progression complex [4, 5], which assem-
bles around the CMG helicase at replication forks
[6]. Previous studies suggested two disparate
roles for the TPR domain of Dia2, either mediating
replisome-specific degradation of Mrc1 and Ctf4
[4] or else tethering SCFDia2 (SCF [Skp1/cullin/F-
box protein]) to the replisome to increase its local
concentration at replication forks [5]. Here, we
show that SCFDia2 does not mediate replisome-
specific degradation of Mrc1 and Ctf4, either during
normal S phase or in response to replication stress.
Instead, the tethering of SCFDia2 to the replisome
progression complex increases the efficiency
of ubiquitylation of the Mcm7 subunit of CMG,
both in vitro and in vivo. Correspondingly, loss of
tethering reduces the efficiency of CMG disas-
sembly in vivo and is synthetic lethal in combina-
tion with a disassembly-defective allele of CDC48.
Residual ubiquitylation of Mcm7 in dia2-DTPR
cells is still CMG specific, highlighting the complex
regulation of the final stages of chromosome
replication, about which much still remains to be
learned.

RESULTS AND DISCUSSION

CMG Disassembly Explains the Apparent Instability of
Replisome-Associated Mrc1 and Ctf4
Previous work showed that the association of budding yeast

Mrc1 and Ctf4 with the Cdc45-MCM-GINS (CMG) helicase

was lost in control cells, but not in dia2D, when cycloheximide

was used to inhibit protein synthesis in asynchronous cell cul-

tures [4]. This was taken as evidence that SCFDia2 specifically

ubiquitylates the fraction of Mrc1 and Ctf4 that is incorporated

into the replisome progression complex at replication forks. We

repeated the same experiment with control cells expressing

DIA2 by immunoprecipitating the Mcm4 helicase subunit from

cell extracts after addition of cycloheximide. Whereas Mcm4

still associated with the remaining subunits of the Mcm2-7

complex in cycloheximide-treated cells, association with all

other RPC subunits was lost (Figure 1A). Rather than reflecting

the specific degradation of RPC-associated Mrc1 and Ctf4,

these data thus indicated that the RPC is no longer present

when control cells are treated with cycloheximide. A simple

explanation for this is provided by the fact that protein synthe-

sis is required for G1 phase cells to enter S phase, but S phase

cells can complete DNA replication without ongoing protein

synthesis [7–9]. Consistent with this view, flow cytometry

data from the same experiment indicated that the S phase

population of cells was lost upon addition of cycloheximide

to the asynchronous cell culture (Figure 1Bi). Cycloheximide

should thus block the assembly, but not the disassembly, of

the RPC.

To confirm that loss of the RPC in cycloheximide-treated

cells reflects CMG disassembly during the completion of chro-

mosome replication, we arrested cells with hydroxyurea in early

S phase, prior to cycloheximide treatment. In contrast to the

above experiment, the association of Mcm4 with all other

RPC components including Ctf4 and Mrc1 was preserved in

hydroxyurea-arrested cells upon treatment with cycloheximide

(Figure 1C), reflecting the stable persistence of the replisome at

stalled replication forks. Moreover, the same was true when

cells lacking the Mec1 checkpoint kinase were arrested with

hydroxyurea and then treated with cycloheximide, indicating
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that the persistent association of Mrc1 and Ctf4 with the

RPC in hydroxyurea-arrested control cells did not reflect

the inhibition of SCFDia2 by the S phase checkpoint pathway

(Figure S1A).

Subsequently, we treated an asynchronous culture of dia2D

cells with cycloheximide and observed the persistent associa-

tion of Mcm4 with all tested RPC components including Mrc1

and Ctf4 (Figure S1B). These data are explicable by the failure

of dia2D cells to disassemble the CMG helicase at the end of S

phase [3].

A D

B

C

E

Figure 1. Tethering of SCFDia2 to the Repli-

some Progression Complex Increases the

Efficiency of CMG Ubiquitylation In Vitro

(A) An asynchronous culture of MCM4-5FLAG

MRC1-18MYC cells (YGDP219) was grown at

30�C, before addition of 500 mg/ml cycloheximide

for the indicated times. Cell extracts were treated

with DNase before immunoprecipitation of Mcm4-

5FLAG and detection of the indicated proteins by

immunoblotting.

(B) (i) Flow cytometry analysis from the same

experiment. (ii) The same strain as above was ar-

rested in G1 phase and then released into S phase

for 60 min in the presence of 0.2 M hydroxyurea.

Cycloheximide was added for the indicated times

and samples processed as before.

(C) The samples from (Bii) were processed as in (A).

(D) Control cells (YTM325) and MCM4-5FLAG

(YTM326) were synchronized at 30�C in the G1

phase of the cell cycle by addition of mating

pheromone, before release into S phase for 20min.

DNA content was monitored by flow cytometry

(upper panels). ‘‘pH 9 cell extracts’’ were then

prepared as described in the Supplemental

Experimental Procedures and incubated with

magnetic beads coupled to anti-FLAGmonoclonal

antibody. The immunoprecipitated proteins were

then monitored by immunoblotting (lower panels).

(E) Control (YASD375), ctf4D (YTM403), mrc1D

(YLG31), and dia2-DTPR (YTM265) were syn-

chronized in early S phase as above, before

immunoprecipitation of TAP-Sld5 from pH 9 cell

extracts on IgG beads.

See also Figures S1 and S2.

Finally, we directly examined RPC

ubiquitylation in an extract of S phase

yeast cells, using conditions that we

had previously shown to support efficient

in vitro ubiquitylation of CMG on its Mcm7

subunit, dependent upon SCFDia2 and the

Cdc34 ubiquitin-conjugating enzyme [3].

Whereas the in vitro ubiquitylation of

CMG was easily detected in these ‘‘pH 9

cell extracts,’’ we did not detect ubiquity-

lation of the associated RPC subunits

including Mrc1 and Ctf4 (Figure 1D).

Taken together, the preceding experi-

ments reflect the disassembly of the

CMG helicase during replication termina-

tion in control cells and the failure of CMG

disassembly in dia2D cells but do not

provide evidence for the replisome-specific ubiquitylation of

Mrc1 and Ctf4 by SCFDia2.

Tethering of SCFDia2 to the Replisome Progression
Complex Increases the Efficiency of CMGUbiquitylation
In Vitro
To examinewhether ubiquitylation of theCMGhelicase is depen-

dent upon tethering ofSCFDia2 to the replisomeprogression com-

plex (Figure S2), we compared the ability of S phase extracts of

control cells ctf4D, mrc1D, or dia2-DTPR to support in vitro
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CMG ubiquitylation. As seen in our previous study [3], ubiquityla-

tion ofMcm7was restricted to the specific fraction that is present

in the CMG helicase, which we isolated by immunoprecipitation

of the Sld5 subunit of GINS (Figure 1E). In control cell extracts,

almost all CMG complexes had ubiquitylated Mcm7 under these

conditions, producing a ladder ofmodifiedMcm7bands in which

unmodified Mcm7 was only a minor form (Figure 1E; IPs of Sld5;

control). Although ubiquitylated Mcm7 could still be detected

when CMG was isolated from extracts of ctf4D, mrc1D, or

dia2-DTPR, ubiquitylation was much reduced in all three cases

compared to the control (Figure 1E). These findings indicated

that the tethering of SCFDia2 to the RPC, by interaction of the

TPR of Dia2 with Mrc1 and Ctf4, is important for the efficiency

of CMG ubiquitylation of CMG in vitro.

To confirm that loss of tethering reduced the capacity of

SCFDia2 to drive in vitro ubiquitylation of the CMG helicase, we

repeated the above experiment with S phase extracts of control,

ctf4D, ormrc1D and then complemented the extracts with buffer

or with purified Ctf4 protein. Critically, addition of purified Ctf4 to

the ctf4D extract restored the efficiency of ubiquitylation,

producing a very similar pattern to the control extract (with di-

ubiquitylated Mcm7 being the predominant form in the isolated

CMG material), whereas addition of Ctf4 to an extract of

mrc1D cells had no effect (Figure 2A). Similarly, we showed

that the CMG ubiquitylation defect of mrc1D extracts could be

rescued in vitro by mixing with extracts of cells that expressed

Mrc1. We synchronized ‘‘recipient’’ cultures of CDC45-ProteinA

in S phase alongside ‘‘donor cultures’’ expressing untagged

CDC45 and thenmixed cultures as indicated in Figure 2B, before

making cell extracts and isolating ‘‘‘recipient CMG’’ by immuno-

precipitation of Cdc45-ProteinA. A donor extract expressing

Mrc1 was able to rescue the in vitro ubiquitylation defect of an

mrc1D recipient extract (Figure 2B, sample 3), whereas an

extract overexpressing Mrc1 further enhanced the ubiquitylation

of CMG (Figure 2B, sample 4). These findings demonstrate that

the TPR-dependent tethering of SCFDia2 to the RPC serves to in-

crease the efficiency of CMG ubiquitylation in vitro.

Tethering of SCFDia2 to the Replisome Progression
Complex Is Important for Efficient CMG Ubiquitylation
In Vivo
Ubiquitylation of the CMGhelicase is restricted to the end of chro-

mosome replication in vivo, when it is coupled rapidly to Cdc48-

dependent disassembly [3]. For visualization of ubiquitylated

CMG in vivo, it is necessary to inactivateCdc48before cells termi-

nate DNA replication and then prepare ‘‘high salt’’ extracts that

block the in vitro ubiquitylation of the CMG helicase. In order

to assess the contribution of replisome tethering of SCFDia2 to

CMG ubiquitylation in vivo, we synchronized cdc48-aid and

dia2-DTPR cdc48-aid cells (aid [auxin inducible degron]) in early

S phase and then depleted Cdc48-aid, before allowing cells to

proceed with chromosome replication (Figure 3A). As shown in

Figure3B, in vivoubiquitylationof theMcm7subunit ofCMGcould

still be detected at the end of S phase in dia2-DTPR cdc48-aid

cells but wasmarkedly reduced. These data indicate that the teth-

ering of SCFDia2 to the RPC increases the efficiency of CMG ubiq-

uitylation at the end of chromosome replication in budding yeast.

Impaired Ubiquitylation of CMG in dia2-DTPR Cells
Produces a Defect in CMG Disassembly
Cells lacking Dia2 have a very high rate of genome instability,

are unable to grow at low temperatures, and are sensitive to

DNA-damaging agents that perturb the progression of DNA

replication forks [5, 10–12]. Dia2 drives the disassembly of the

CMG helicase at the end of chromosome replication so that

the absence of Dia2 causes CMG to persist into G1 phase of

A

B

Figure 2. The CMG Ubiquitylation Defects of ctf4D and mrc1D Can

Be Rescued In Vitro

(A) S phase cell extracts of control (YTM401), ctf4D (YTM438), and mrc1D

(YTM440) were prepared at pH 9 as above and complemented with buffer or

purified Ctf4 as indicated, before immunoprecipitation of Cdc45-ProteinA. The

indicated proteins were then monitored by immunoblotting. Asterisks denote

non-specific bands.

(B) To test for in vitro rescue of the ubiquitylation defect ofmrc1D cell extracts,

we synchronized the indicated CDC45-ProteinA ‘‘recipient strains’’

(1, YTM401; 2–4, YTM440) and CDC45 ‘‘donor strains’’ (1–4, YSS3, YPNK314,

YSS3, and YPNK342, respectively) in S phase at 30�C. Each of the indicated

pairs of recipient and donor cultures were then mixed and used to prepare a

single cell extract at pH 9 as above. After digestion of chromosomal DNA, the

CMG helicase from recipient cells was isolated by immunoprecipitation of its

ProteinA-tagged-Cdc45 subunit.
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the next cell cycle [3], but at present, it is not known how this

defect is linked to the other phenotypes of dia2D cells.

Although CMG was not detected during G1 phase in dia2-

DTPR cells grown at 30�C, or in cdc48-aid cells grown at 30�C
in medium lacking auxin (permissive conditions, in which the

phenotype just reflects the C-terminal tag on Cdc48), we found

that the combination of dia2-DTPR with cdc48-aid produced a

synthetic defect in CMG disassembly that resembled the pheno-

type of dia2D cells at 30�C (Figure 4A). Moreover, the dia2-DTPR

cdc48-aid strain also shared the sensitivity of dia2D cells to

the DNA-damaging agent methyl methanesulfonate (Figure 4B;

note that cells were grown in the absence of auxin). These find-

ings suggested that dia2-DTPR cells have a partial defect in

CMG disassembly, even though helicase disassembly is still

completed by the end of the cell cycle. Accordingly, we found

that asynchronous cultures of dia2-DTPR contained slightly

more CMG helicase than control cells (Figure 4C; we cannot

exclude that the activation of more origins during S phase might

also contribute to this effect in dia2-DTPR cells).

We previously showed that the cdc48-3 allele has a partial

defect in CMG disassembly at the permissive temperature of

24�C [3]. Strikingly, we found that dia2-DTPR was synthetic

lethal with cdc48-3 at 24�C (Figure 4D), reminiscent of the

cold-sensitive phenotype of dia2D cells [5]. Moreover, ctf4D

was also synthetic lethal with cdc48-3 at 24�C, whereas

mrc1D cdc48-3 showed a synthetic growth defect (Figure S3).

In contrast, deletion of factors with other roles at defective repli-

cation forks, such as Top3 or Rad51, did not cause synthetic

lethality with cdc48-3 (Figure S3). Taken together, these findings

indicate that tethering of SCFDia2 to the RPC contributes to effi-

cient disassembly of the CMG helicase at the end of chromo-

some replication in budding yeast.

CMG disassembly represents the key regulated step during

replication termination, which drives replisome disassembly

and must not occur prematurely [1, 2]. Although CMG ubiquity-

lation and Cdc48-dependent disassembly have been conserved

from budding yeast to vertebrates, the mechanism and regula-

tion of CMG disassembly are still very poorly characterized in

all eukaryotes. Budding yeast SCFDia2 is currently the only ubiq-

uitin ligase that has been shown to drive CMG disassembly in

any species and thus provides an important model system with

which to study the underlying principles.

It seems likely that ubiquitylation is rate limiting for CMGdisas-

sembly, although this remains to be demonstrated by mapping

and mutation of the ubiquitylation sites in Mcm7. It is clear that

Mcm7 ubiquitylation is regulated in an exquisite fashion on

many levels, both spatially and temporally. One key aspect is

that ubiquitylation of Mcm7 only occurs in the context of the

CMG helicase and thus is restricted to replication forks. Our find-

ings in this study indicate that SCFDia2 is preferentially targeted

to the replisome progression complex, rather than simply to

the CMG helicase itself. Tethering of SCFDia2 to the RPC in-

creases the efficiency of CMG ubiquitylation and involves the

interaction of the TPR domain of Dia2 with both Ctf4 and Mrc1,

which only come together in the context of the RPC. Never-

theless, the residual ubiquitylation of Mcm7 in cells that cannot

tether SCFDia2 to the RPC is also CMG specific (Figures 2

and 3). One possibility is that the leucine-rich repeats of Dia2

target the ligase to Mcm7 in a CMG-dependent manner that re-

quires a structural change in the helicase during termination.

Factors that drive the assembly of theCMGhelicase during the

initiation of replication, such as the Cdc7 kinase or the TopBP1

adaptor protein, are currently being pursued as targets for new

anti-cancer therapies in tumors that retain inherent defects in

chromosome replication [13–15]. It will be interesting to explore

the potential of CMG disassembly for future therapies, and it

will thus be important to determine the ubiquitin ligase(s) driving

CMG disassembly in human cells and other eukaryotic species.

Orthologs of Dia2 are present in other yeasts [16], including

fission yeast Pof3 that appears to use its TPR domain to target

Ctf4 in a manner analogous to budding yeast Dia2 (Figure S4).

Moreover, a small-molecule inhibitor of cullin neddylation blocks

A

B

Figure 3. Tethering of SCFDia2 to the Replisome Progression

Complex Increases the Efficiency of In Vivo CMG Ubiquitylation at

the End of S Phase

(A) cdc48-aid (YMM228) and cdc48-aid dia2-DTPR (YPNK334) were syn-

chronized in G1 phase at 30�C and then released into S phase for 60min in the

presence of 0.2M hydroxyurea. For depletion of Cdc48-aid, 0.5 mM auxin was

added for 60 min, before release into fresh medium containing auxin but

lacking hydroxyurea. DNA content was monitored by flow cytometry, and

samples were taken at the indicated times (‘‘1’’ and ‘‘2’’) to prepare pH 9 cell

extracts containing 700 mM salt.

(B) CMG helicase was isolated as above by immunoprecipitation of TAP-

tagged Sld5 subunit.

Current Biology 25, 2254–2259, August 31, 2015 ª2015 The Authors 2257



CMG ubiquitylation at the end of DNA replication in frog egg ex-

tracts [17]. Nevertheless, homologs of Dia2 have yet to be identi-

fied in higher eukaryotes, and it is possible that an unrelated E3

ligase ubiquitylates CMG at the end of chromosome replication

in other species. Functional screens for factors driving CMG

disassembly in higher eukaryotes will be an important challenge

for future studies.
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