28 research outputs found

    The influence of cell size on the mechanical properties of nanocellular PMMA

    Get PDF
    Solid-state foaming experiments are conducted on three grades of polymethyl methacrylate (PMMA). Nanocellular PMMA foams are manufactured with an average cell size ranging from 20 nm to 84 nm and a relative density between 0.37 and 0.5. For benchmarking purposes, additional microcellular PMMA foams with an average cell size close to 1 µm and relative density close to that of the nanocellular foams are manufactured. Uniaxial compression tests and single edge notch bend tests are conducted on the PMMA foams. The measured Young’s modulus and yield strength of the PMMA foams are independent of cell size whereas the fracture toughness of the PMMA foam increases with decreasing average cell size from the micron range to the nanometer range.Financial assistance from MINECO, FEDER, UE (MAT2015-69234-R), the Junta of Castile and Leon (VA275P18) and Spanish Ministry of Science, Innovation and Universities (RTI2018-098749-B-I00) are gratefully acknowledged. Financial support from FPU grant FPU14/02050 (V. Bernardo) from the Spanish Ministry of Education and Junta of Castile and Leon grant (J. Martín-de León) are gratefully acknowledged. Financial support from SABIC and the EPSRC award 1611305 (F. Van Loock), and the ERC project MULTILAT (N. A. Fleck) are acknowledged too

    Isotemporal substitution of inactive time with physical activity and time in bed: Cross-sectional associations with cardiometabolic health in the PREDIMED-Plus study

    Get PDF
    © 2019 The Author(s). Background: This study explored the association between inactive time and measures of adiposity, clinical parameters, obesity, type 2 diabetes and metabolic syndrome components. It further examined the impact of reallocating inactive time to time in bed, light physical activity (LPA) or moderate-To-vigorous physical activity (MVPA) on cardio-metabolic risk factors, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Methods: This is a cross-sectional analysis of baseline data from 2189 Caucasian men and women (age 55-75 years, BMI 27-40 Kg/m2) from the PREDIMED-Plus study (http://www.predimedplus.com/). All participants had ≥3 components of the metabolic syndrome. Inactive time, physical activity and time in bed were objectively determined using triaxial accelerometers GENEActiv during 7 days (ActivInsights Ltd., Kimbolton, United Kingdom). Multiple adjusted linear and logistic regression models were used. Isotemporal substitution regression modelling was performed to assess the relationship of replacing the amount of time spent in one activity for another, on each outcome, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Results: Inactive time was associated with indicators of obesity and the metabolic syndrome. Reallocating 30 min per day of inactive time to 30 min per day of time in bed was associated with lower BMI, waist circumference and glycated hemoglobin (HbA1c) (all p-values < 0.05). Reallocating 30 min per day of inactive time with 30 min per day of LPA or MVPA was associated with lower BMI, waist circumference, total fat, visceral adipose tissue, HbA1c, glucose, triglycerides, and higher body muscle mass and HDL cholesterol (all p-values < 0.05). Conclusions: Inactive time was associated with a poor cardio-metabolic profile. Isotemporal substitution of inactive time with MVPA and LPA or time in bed could have beneficial impact on cardio-metabolic health. Trial registration: The trial was registered at the International Standard Randomized Controlled Trial (ISRCTN: http://www.isrctn.com/ISRCTN89898870) with number 89898870 and registration date of 24 July 2014, retrospectively registered

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    The influence of cell size on the mechanical properties of nanocellular PMMA

    No full text
    Solid-state foaming experiments are conducted on three grades of polymethyl methacrylate (PMMA). Nanocellular PMMA foams are manufactured with an average cell size ranging from 20 nm to 84 nm and a relative density between 0.37 and 0.5. For benchmarking purposes, additional microcellular PMMA foams with an average cell size close to 1 µm and relative density close to that of the nanocellular foams are manufactured. Uniaxial compression tests and single edge notch bend tests are conducted on the PMMA foams. The measured Young’s modulus and yield strength of the PMMA foams are independent of cell size whereas the fracture toughness of the PMMA foam increases with decreasing average cell size from the micron range to the nanometer range

    Quantitative Profiling of Volatile and Phenolic Substances in the Wine Vernaccia di Serrapetrona by Development of an HS-SPME-GC-FID/MS Method and HPLC-MS

    No full text
    A headspace solid-phase microextraction coupled to gas chromatography with mass spectrometry and flame ionization detection (HS-SPME-GC-MS/FID) method has been developed for quantifying the main volatiles of the Italian sparkling red wine Vernaccia di Serrapetrona, leading to establish that the divinylbenzene/carboxen/polydimethylsiloxanecoated (gray) fiber, an equilibration time of 15 min, and an extraction time of 15 min at a temperature of 35 °C are the conditions representing the best compromise in terms of sensitivity and time expense, to carry out the analyses. Among the volatiles quantified, 2-phenylethanol, 3-methylbutyl acetate, and ethyl esters levels resulted to be above their odor thresholds, thus being probably responsible for the aroma of this wine with their positive attributes. Phenolic compounds, namely gallic acid, p-coumaric acid, caffeic acid, (+)-catechin, and (+)-epicatechin, were also quantified using high-performance liquid chromatography-MS, thus obtaining an overall characterization of molecules fundamental for both the sensory and the healthy characteristics of the wine. The total phenolic content was found to be in the range of 19.25–61.67 mg l−1 with the most abundant compound being gallic acid (7.44–25.78 mg l−1). Main differences in volatile and phenolic compounds between samples were discussed and analyzed by chemometric techniques as principal component analysis

    Correlation of fatigue with other disease related and psychosocial factors in patients with rheumatoid arthritis treated with tocilizumab: ACT-AXIS study

    No full text
    To assess the hypothesis if tocilizumab (TCZ) is effective on disease activity, and also its effect in fatigue and other clinical and psychological disease-related factors in patients with rheumatoid arthritis (RA) treated with TCZ.A 24-week, multicenter, prospective, observational study in patients with moderate to severe RA receiving TCZ after failure or intolerance to disease-modifying antirheumatic drugs or tumor necrosis factor-alpha was conducted.Of the 122 patients included, 85 were evaluable for effectiveness (85% female, 51.9 +/- 12.5 years, disease duration 8.7 +/- 7.4 years). Mean change in C-reactive protein level from baseline to week 12 was -11.2 +/- 4.0 (P < .001). Mean Disease Activity Index score (DAS28) decreased from 5.5 +/- 1.0 at baseline to 2.7 +/- 1.3 (P < .001) at week 24. Mean change in Functional Assessment of Chronic Illness Therapy score was -5.4 +/- 11.2 points at week 24. Multiple regression analysis showed that the improvement in DAS28, sleep, and depression explained 56% and 47% of fatigue variance at week 12 and 24, respectively.Tocilizumab is effective in reducing disease activity and results in a clinically significant improvement in fatigue, pain, swollen joint count, morning stiffness, sleepiness, depression, and DAS28; the last 3 were specifically identified as factors explaining fatigue variance with the use of TCZ in RA patients
    corecore