49 research outputs found

    New records of lichens and allied fungi from the Leningrad Region, Russia. XI

    Get PDF
    Twelve lichen species and two lichenicolous fungi, of them seven that belong to Micarea prasina group, are reported for the first time for St. Petersburg or the whole Leningrad Region. The lichenicolous fungus Intralichen baccisporus is new to Russia, and the lichen Micarea nowakii – for European Russia. A comparative table of characteristics for seven species of Micarea prasina group is presented

    Features of Chronic Bronchitis in Different Age Groups

    Get PDF
    Background: Lung diseases are assuming greater relevance and importance today. Chronic bronchitis is a self-nosology, which may precede the development of COPD, the importance of which can hardly be overestimated. The main problem in this disease is caused by late diagnosis and treatment due to the delay by patients in seeking medical help. The aim of the work was to study the distribution and exposure to tobacco smoke, especially chronic bronchitis, depending on various factors, including age. Methods: We examined 1779 persons, including 855 men and 924 women. The mean age of the population was 35.83±8.3 years. We conducted surveys and spirometry. The outcome was assessed after a bronchodilation test was performed with salbutamol 400 mcg. We performed all statistical analysis using software package Statistica 10. Results: We identified chronic bronchitis in 9.2% of the cases in the group of younger individuals and in 14.9% of the cases in the group of older individuals, during the active detection of chronic bronchitis using questionnaires. The prevalence of cigarette smoking was slightly higher among the younger (39.5%) than the older persons (33.6%); the frequency of smoking in a group of chronic bronchitis was reliably higher. Also, in this group, the performance spirometry reliably decreased. Conclusions: Outpatient survey is an effective method of identifying chronic bronchitis. Smoking is a major risk factor in the group of young respondents and the prevalence of smoking is inversely related to the education level of the respondents, regardless of age. As the decline in the Forced Expiratory Volume (FEV1 and FEV1/FVC) is the main criterion diagnosis of COPD, it revealed significant declines in the FEV1 of the younger smoking individuals, which may help to predict the development of COPD in the older age group

    Comparative Genomics And Functional Analysis Of Rhamnose Catabolic Pathways And Regulons In Bacteria

    Get PDF
    L-rhamnose (Rha) is a deoxy-hexose sugar commonly found in nature. L-Rha catabolic pathways were previously characterized in various bacteria including Escherichia coli. Nevertheless, homology searches failed to recognize all the genes for the complete L Rha utilization pathways in diverse microbial species involved in biomass decomposition. Moreover, the regulatory mechanisms of L-Rha catabolism have remained unclear in most species. A comparative genomics approach was used to reconstruct the L-Rha catabolic pathways and transcriptional regulons in the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Thermotogae. The reconstructed pathways include multiple novel enzymes and transporters involved in the utilization of L-Rha and L-Rha-containing polymers. Large-scale regulon inference using bioinformatics revealed remarkable variations in transcriptional regulators for L-Rha utilization genes among bacteria. A novel bifunctional enzyme, L-rhamnulose-phosphate aldolase (RhaE) fused to L-lactaldehyde dehydrogenase (RhaW), which is not homologous to previously characterized L-Rha catabolic enzymes, was identified in diverse bacteria including Chloroflexi, Bacilli, and Alphaproteobacteria. By using in vitro biochemical assays we validated both enzymatic activities of the purified recombinant RhaEW proteins from Chloroflexus aurantiacus and Bacillus subtilis. Another novel enzyme of the L-Rha catabolism, L-lactaldehyde reductase (RhaZ), was identified in Gammaproteobacteria and experimentally validated by in vitro enzymatic assays using the recombinant protein from Salmonella typhimurium. C. aurantiacus induced transcription of the predicted L-Rha utilization genes when L-Rha was present in the growth medium and consumed L-Rha from the medium. This study provided comprehensive insights to L-Rha catabolism and its regulation in diverse Bacteria

    Genomic encyclopedia of sugar utilization pathways in the Shewanella genus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments.</p> <p>Results</p> <p>We applied this integrated approach to systematically map carbohydrate utilization pathways in 19 genomes from the <it>Shewanella </it>genus. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across <it>Shewanella </it>species providing insights into their ecophysiology and adaptive evolution. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars.</p> <p>Comparison of the reconstructed catabolic pathways with <it>E. coli </it>identified multiple differences that are manifested at various levels, from the presence or absence of certain sugar catabolic pathways, nonorthologous gene replacements and alternative biochemical routes to a different organization of transcription regulatory networks.</p> <p>Conclusions</p> <p>The reconstructed sugar catabolome in <it>Shewanella </it>spp includes 62 novel isofunctional families of enzymes, transporters, and regulators. In addition to improving our knowledge of genomics and functional organization of carbohydrate utilization in Shewanella, this study led to a substantial expansion of our current version of the Genomic Encyclopedia of Carbohydrate Utilization. A systematic and iterative application of this approach to multiple taxonomic groups of bacteria will further enhance it, creating a knowledge base adequate for the efficient analysis of any newly sequenced genome as well as of the emerging metagenomic data.</p

    Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon

    Get PDF
    A comparative genomic approach was used to reconstruct transcriptional regulation of NAD biosynthesis in bacteria containing orthologs of Bacillus subtilis gene yrxA, a previously identified niacin-responsive repressor of NAD de novo synthesis. Members of YrxA family (re-named here NiaR) are broadly conserved in the Bacillus/Clostridium group and in the deeply branching Fusobacteria and Thermotogales lineages. We analyzed upstream regions of genes associated with NAD biosynthesis to identify candidate NiaR-binding DNA motifs and assess the NiaR regulon content in these species. Representatives of the two distinct types of candidate NiaR-binding sites, characteristic of the Firmicutes and Thermotogales, were verified by an electrophoretic mobility shift assay. In addition to transcriptional control of the nadABC genes, the NiaR regulon in some species extends to niacin salvage (the pncAB genes) and includes uncharacterized membrane proteins possibly involved in niacin transport. The involvement in niacin uptake proposed for one of these proteins (re-named NiaP), encoded by the B. subtilis gene yceI, was experimentally verified. In addition to bacteria, members of the NiaP family are conserved in multicellular eukaryotes, including human, pointing to possible NaiP involvement in niacin utilization in these organisms. Overall, the analysis of the NiaR and NrtR regulons (described in the accompanying paper) revealed mechanisms of transcriptional regulation of NAD metabolism in nearly a hundred diverse bacteria

    The FGGY carbohydrate kinase family : insights into the evolution of functional specificities

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Computational Biology 7 (2011): e1002318, doi:10.1371/journal.pcbi.1002318.Function diversification in large protein families is a major mechanism driving expansion of cellular networks, providing organisms with new metabolic capabilities and thus adding to their evolutionary success. However, our understanding of the evolutionary mechanisms of functional diversity in such families is very limited, which, among many other reasons, is due to the lack of functionally well-characterized sets of proteins. Here, using the FGGY carbohydrate kinase family as an example, we built a confidently annotated reference set (CARS) of proteins by propagating experimentally verified functional assignments to a limited number of homologous proteins that are supported by their genomic and functional contexts. Then, we analyzed, on both the phylogenetic and the molecular levels, the evolution of different functional specificities in this family. The results show that the different functions (substrate specificities) encoded by FGGY kinases have emerged only once in the evolutionary history following an apparently simple divergent evolutionary model. At the same time, on the molecular level, one isofunctional group (L-ribulokinase, AraB) evolved at least two independent solutions that employed distinct specificity-determining residues for the recognition of a same substrate (L-ribulose). Our analysis provides a detailed model of the evolution of the FGGY kinase family. It also shows that only combined molecular and phylogenetic approaches can help reconstruct a full picture of functional diversifications in such diverse families.This study was funded by NIH and DOE grants

    The COMBREX Project: Design, Methodology, and Initial Results

    Get PDF
    © 2013 Brian P. et al.Prior to the “genomic era,” when the acquisition of DNA sequence involved significant labor and expense, the sequencing of genes was strongly linked to the experimental characterization of their products. Sequencing at that time directly resulted from the need to understand an experimentally determined phenotype or biochemical activity. Now that DNA sequencing has become orders of magnitude faster and less expensive, focus has shifted to sequencing entire genomes. Since biochemistry and genetics have not, by and large, enjoyed the same improvement of scale, public sequence repositories now predominantly contain putative protein sequences for which there is no direct experimental evidence of function. Computational approaches attempt to leverage evidence associated with the ever-smaller fraction of experimentally analyzed proteins to predict function for these putative proteins. Maximizing our understanding of function over the universe of proteins in toto requires not only robust computational methods of inference but also a judicious allocation of experimental resources, focusing on proteins whose experimental characterization will maximize the number and accuracy of follow-on predictions.COMBREX is funded by a GO grant from the National Institute of General Medical Sciences (NIGMS) (1RC2GM092602-01).Peer Reviewe

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
    corecore