
Community Page

The COMBREX Project: Design, Methodology, and Initial
Results
Brian P. Anton1*., Yi-Chien Chang2., Peter Brown3, Han-Pil Choi3, Lina L. Faller2, Jyotsna Guleria3, Zhenjun Hu2,

Niels Klitgord2, Ami Levy-Moonshine3, Almaz Maksad3, Varun Mazumdar2, Mark McGettrick4, Lais Osmani3,

Revonda Pokrzywa3, John Rachlin4, Rajeswari Swaminathan3, Benjamin Allen5,6, Genevieve Housman3,

Caitlin Monahan3, Krista Rochussen3, Kevin Tao3, Ashok S. Bhagwat7, Steven E. Brenner8, Linda Columbus9,
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Introduction

Prior to the ‘‘genomic era,’’ when the

acquisition of DNA sequence involved

significant labor and expense, the sequenc-

ing of genes was strongly linked to the

experimental characterization of their

products. Sequencing at that time directly

resulted from the need to understand an

The Community Page is a forum for organizations
and societies to highlight their efforts to enhance
the dissemination and value of scientific knowledge.

Citation: Anton BP, Chang Y-C, Brown P, Choi H-P, Faller LL, et al. (2013) The COMBREX Project: Design,
Methodology, and Initial Results. PLoS Biol 11(8): e1001638. doi:10.1371/journal.pbio.1001638

Published August 27, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted,
modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under
the Creative Commons CC0 public domain dedication.

Funding: COMBREX is funded by a GO grant from the National Institute of General Medical Sciences (NIGMS)
(1RC2GM092602-01). The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: COMBREX, COMputational BRidges to EXperiments; EC, Enzyme Commission; GO, Gene
Ontology; GSDB, Gold Standard Database.

* E-mail: anton@neb.com (BPA); kasif@bu.edu (SK)

. These authors contributed equally to this work.

PLOS Biology | www.plosbiology.org 1 August 2013 | Volume 11 | Issue 8 | e1001638



experimentally determined phenotype or

biochemical activity. Now that DNA

sequencing has become orders of magni-

tude faster and less expensive, focus has

shifted to sequencing entire genomes.

Since biochemistry and genetics have

not, by and large, enjoyed the same

improvement of scale, public sequence

repositories now predominantly contain

putative protein sequences for which there

is no direct experimental evidence of

function. Computational approaches at-

tempt to leverage evidence associated with

the ever-smaller fraction of experimentally

analyzed proteins to predict function for

these putative proteins. Maximizing our

understanding of function over the uni-

verse of proteins in toto requires not only

robust computational methods of infer-

ence but also a judicious allocation of

experimental resources, focusing on pro-

teins whose experimental characterization

will maximize the number and accuracy of

follow-on predictions.

COMBREX (COMputational BRidges

to EXperiments, http://combrex.bu.edu)

is an NIH-funded enterprise that has

brought computational and experimental

biologists together, with the goal of greatly

improving our overall understanding of

microbial protein function [1,2]. Since its

inception, it has made significant progress

toward the following goals: identifying the

minority of proteins that have already

been experimentally characterized, serving

as a public repository of novel protein

function predictions made by diverse

methods, producing a clear chain of

evidence from experiment to prediction,

identifying (‘‘recommending’’) those func-

tional predictions whose verification will

contribute most to our overall understand-

ing of protein function, and actually

funding the experiments to test function.

The recommendation system is a proof of

concept based on active learning princi-

ples and includes, for a given protein,

criteria including phylogenetic distribution

of its protein family, biological and clinical

phenotypes associated with it, the avail-

ability of protein structure data, and its

sequence distance from experimentally

determined proteins or from the other

proteins in its family.

COMBREX comprises several interre-

lated efforts. First, the project is building a

community of researchers (the COMBREX

Community) committed to achieving the

goals above. Second, the project maintains

a web-accessible database (the COMBREX

Database) of known and predicted functions

for microbial proteins. The database

search features enable biologists to identify

predictions whose experimental verifica-

tion is particularly important. Finally, the

project issues small monetary awards

(COMBREX grants) to biologists to fund

the experimental testing of such predic-

tions. In this paper, we provide a brief

review of COMBREX, focusing on its

overall design, its computational resources,

and the experimental results from the first

phase of the project.

Overview of COMBREX

The activities of the COMBREX Com-

munity are summarized in Figure 1. As a

starting point, we identify those proteins

with experimentally confirmed functions (a

functional ‘‘ground truth’’). The COM-

BREX Community and its collaborators

have assembled and are in the process of

curating such a set, called the Gold

Standard Database (GSDB). This set of

known sequence-function relationships

will ultimately serve as the basis for

making predictions for similar proteins

whose functions have not been experi-

mentally determined and can be used to

train other types of prediction-generating

algorithms. Currently, the GSDB can be

selectively accessed through the COM-

BREX Database by searching for proteins

whose functions are experimentally deter-

mined.

The objectives of the COMBREX

Database are to act as a comprehensive

repository of protein function predictions

and experimental data, and to recommend

important predictions to researchers for

experimental analysis. Approximately 3.3

million proteins from more than 1,000

completely sequenced microbial genomes

are represented in the database, and these

are associated with about 2.5 million

predictions of function. The functional status

of each protein (that is, whether the

function is known through direct observa-

tion, through prediction, or not at all) is

summarized in Figure 2: experimentally

characterized proteins are designated green,

proteins with functional predictions blue,

and those with no available predictions

black (see Materials and Methods in Text S1

for further description of the color coding).

The small fraction of experimentally char-

acterized proteins is necessarily an under-

estimate because the GSDB is still a work in

progress, but we estimate the true number

is likely no more than ten-fold larger. The

fraction of proteins with at least one

computationally predicted function (76%)

is by far the largest category, although the

degree to which the prediction specifies a

precise function varies widely.

Predictive models learn the most about

a set of proteins through the experiment

that produces the maximum gain of

information over the entire set, and so

identifying such experiments is of critical

importance. Protein function predictions

within the COMBREX Database are

prioritized based on the expected infor-

mation to be gained by their experimental

testing. Information gained from experi-

ments can be defined formally using

probabilistic criteria [3], but can be

understood intuitively in terms of the

number of proteins for which predictions

can be made, and the accuracy of those

predictions, using the new experimental

evidence. The recommendation system

that performs the prioritization is intended

to provide guidance to experimental

researchers interested in applying for

COMBREX grants. These grants are

issued to biochemists and molecular biol-

ogists to enable the experiments needed to

characterize specific microbial proteins,

giving preference to those of ‘‘high prior-

ity’’ as identified by this system. The

results of successful experiments can then

be added to the GSDB, thereby complet-

ing the cycle depicted in Figure 1. COM-

BREX grants are dependent upon exter-

nal funding, and the first round of awards

was generously supported by the NIH

using a novel funding mechanism. COM-

BREX continues to seek additional sourc-

es of funding to enlarge the participating

community internationally.

COMBREX Grants: Experiments
Funded

Our funding model encourages the

experimental characterization of proteins

through small-scale funding of many

laboratories using grants directly managed

by COMBREX. Although high-through-

put methods may ultimately allow for the

study of many proteins simultaneously, at

present the most effective way to accu-

rately characterize protein function is

through the dedicated examination of

individual proteins. In order to maximize

the value of COMBREX grants, they are

preferentially issued to laboratories with

demonstrated experience in the proposed

assays. There are experimental and eco-

nomic efficiencies to be gained by this in

that these laboratories will typically al-

ready possess many of the reagents

required for the assay, including relevant

substrate libraries, as well as personnel

with the expertise to conduct the assays

rapidly. In addition, we advocate the

testing of several members of a given

protein family within a single grant

whenever possible, since once all the

necessary components are in place to test
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a single protein, there are only marginal

increases in cost and labor needed to test

multiple similar proteins. Importantly,

should these similar proteins demonstrate

different functions, this approach has the

potential to delineate functional boundar-

ies in sequence space, improving the

follow-on predictions for many other

proteins. All COMBREX grant applica-

tions are reviewed by an external panel of

scientists to ensure that the proposed work

is scientifically sound and that each

laboratory is well suited to the proposed

tasks.

In the first year of the project, COM-

BREX-funded and COMBREX-associat-

ed experimental efforts have initiated the

examination of 140 proteins. (Funded

teams can be found on the COMBREX

website, at http://combrex.bu.edu/

acknowledgments, and a complete list of

these proteins can be found in Table S1.)

In the ideal case that all of the proposed

experiments are successful, the potential

impact of these experiments in terms of

follow-on predictions would be significant:

the 140 proteins reside in Protein Clusters

containing in total more than 3,200

proteins (resulting in high-confidence pre-

dictions for these) and are similar to over

60,000 proteins with BLAST E-values less

than 1e-05 (resulting in lower-confidence

predictions for these). Furthermore,

among these 140 proteins are encoded

eight Pfam-defined domains of unknown

function (DUFs), resulting in novel predic-

tive insights for all other proteins contain-

ing these DUFs (a total of 1,610 in the

COMBREX Database). Finally, 37 of

these 140 proteins contain a total of 28

unique Pfam-defined domains shared with

human proteins, providing functional in-

sights that may impact human health.

Research on about half of these proteins

has been successfully completed, and

results for some have been published [4–

8], while research on the other half is still

in progress. For those results that have

been reported, 65% of proteins (44 of 68)

have been verified to have the predicted

function described in the COMBREX

grant proposal, while no activity was

observed for the remaining 24 (Table

S1). Nine manuscripts funded by these

COMBREX grants have been submitted

for publication or are in preparation. As

examples, we highlight the results of three

COMBREX grants in Text S1.

Connecting Function
Predictions with Experimental
Data

A major effort of COMBREX is to

make predictions of gene function trace-

able to their experimental underpinnings.

This knowledge is critical to any research-

er attempting to assess the probability that

a particular prediction is correct. Unfor-

tunately, this information has generally

not been maintained in most databases.

Indeed, it is frequently unclear whether an

annotated function describes the results of

an experiment performed on that protein

or is an inference made based upon

homology to some other protein on which

the experiment was performed.

In the COMBREX Database, this trace

should ideally make clear the method used

to generate the prediction, the input to the

method, and the confidence in the ,gene,

prediction. pairing as measured by the

method’s scoring scheme. In practice, this

is not always possible, particularly for

unsourced annotations imported from

public databases. However, direct com-

parison of such unsourced annotations

with COMBREX-supported GSDB-based

Figure 1. Schematic overview of the computational and experimental contributions of COMBREX and its users, and the
interrelationships of these contributions. Data and results specific to COMBREX are shown in boxes. External data imported into COMBREX are
also shown, with arrows indicating entry points into the cycle. Methodology employed by COMBREX and its users is shown in blue type, as it is used
to generate data. Not shown are two critical contributions to COMBREX: genome and cluster data imported from NCBI RefSeq and ProtClustDB,
respectively, and NIH funding, which enables the grants that COMBREX issues to experimental laboratories.
doi:10.1371/journal.pbio.1001638.g001
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similarity assessment can provide some

measure of confidence. For many unchar-

acterized proteins, COMBREX provides

predictions based on sequence similarity to

GSDB proteins: we note the GSDB

protein that is the source of the prediction,

the experimentally determined function,

the publication(s) describing those experi-

ments, and the degree of sequence simi-

larity. As additional proofs of concept, we

have explored similarities based upon

protein structure and protein domain

composition to assess the extent to which

the experimental data in the GSDB can

generate predictions for the remaining

uncharacterized proteins. Specifically, we

sought to determine the fractions of all

uncharacterized proteins (blue or black) that

can be related to experimentally charac-

terized proteins (green) through sequence

and domain-composition similarity under

various thresholds. Results of these analy-

ses, which are described in Text S1, show

that existing experimental information can

provide functional insight into more than

half of all uncharacterized proteins.

Prioritizing Predictions for
Experimental Testing

Given the enormous mismatch in the

rates of gene discovery by DNA sequenc-

ing and protein function confirmation by

experiment, there is a compelling motiva-

tion to identify those proteins for which

experimental results would be maximally

informative in terms of follow-on predic-

tive power. The COMBREX Database

attempts to prioritize predictions based on

the expected information to be gained by

their experimental testing. We envision

eventually employing a comprehensive

metric based on probabilistic functional

linkage [12–14] to assess ‘‘importance’’

using information theoretical principles.

Our current recommendation system is a

prototype that uses several relatively

simple criteria to identify ‘‘important’’

proteins and make funding decisions.

The first criterion is the functional status

of proteins assigned by COMBREX, with

the rationale being to focus on those that

have testable predicted functions but no

associated experimental evidence (blue

genes [Figure 2]). Second, when recom-

mending proteins to examine from within

a large family (cluster), COMBREX

recommends candidates based on two

properties: genome of origin and position

within the cluster. We have chosen two

‘‘focus organisms,’’ Escherichia coli K-12

MG1655 and Helicobacter pylori 26695, for

which we would like to obtain a large

amount of experimental evidence, and we

encourage confirming predictions from

genes in these two strains. If a cluster does

not contain a member from either of these

genomes, COMBREX recommends

gene(s) with the shortest average sequence

Figure 2. Definitions of COMBREX functional status symbols and fractions of microbial genes in COMBREX in each status category.
Experimentally characterized proteins are green. (Those in the green set that have been manually curated by the GSDB are also marked with a gold
‘‘G.’’) Proteins with functional predictions but no experimental evidence are blue. Proteins with no available functional predictions are black.
doi:10.1371/journal.pbio.1001638.g002
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distance to all other members of the

cluster, in an attempt to select a gene

most likely to be representative of the

family (see Materials and Methods in Text

S1). Third, we recommend proteins from

larger protein families over those from

smaller families, where a ‘‘family’’ is a

super-cluster as defined by ProtClustDB

(Materials and Methods in Text S1).

Under the assumption that families are

isofunctional, experimental evidence from

one protein is likely to have an impact on

our total understanding of protein function

that is proportionate to the size of its

family. This concept has been the subject

of one published list of proposed experi-

mental targets [15]. Finally, we recognize

that there are significant contributory

factors to ‘‘importance’’ that are indepen-

dent of family size or sequence similarity.

Examples of such factors might include

being a key member of a particular

biochemical pathway, having a biochem-

ical function not previously identified

experimentally, indicating functional di-

versification within a family previously

thought to be isofunctional, or being

associated with a phenotype of interest.

This last factor benefits greatly from

community input, and we encourage

Community members to nominate pro-

teins they believe to be important. A more

detailed discussion of prioritization criteria

can be found in Text S1.

Taking the above criteria into consid-

eration, COMBREX has identified 100

genes we believe are of high priority for

experimental analysis (http://combrex.bu.

edu/top100) and specifically encourage

proposals to characterize these proteins.

Toward a Gold Standard
Database

Experimental observations provide the

foundation on which all functional predic-

tions rest. In order to properly trace

predictions to experiments, as well as to

intelligently select maximally informative

proteins for future experimental testing,

one requires comprehensive knowledge of

the identities of previously characterized

proteins. In collaboration with NCBI,

JCVI, and UniProt, we have begun

assembling such a comprehensive set,

namely the GSDB. A schema for the

nomination and inclusion of genes in the

GSDB is shown in Figure S4. First,

candidate genes with functions that are

believed to be experimentally determined

are identified, either by importation from

other curated databases such as EcoCyc,

CharProtDB (JCVI) [16,17], REBASE,

and UniProtKB/Swiss-Prot, or by ‘‘nom-

ination’’ by COMBREX Community

members via the website. Once identified,

candidate genes are manually examined

by volunteer curators to see if they meet

the criteria for inclusion in the GSDB.

Two criteria must be met for a gene/

protein to meet the curation standards.

First, the biochemical function of the gene

product must have been determined

experimentally in a published work or

fully documented in a public database.

Second, the DNA and/or protein se-

quence of the precise protein whose

function was determined must also be

known and be publicly available. Typical-

ly, this involves knowing with some

precision the bacterial or archaeal strain

from which the experimentally determined

protein was isolated or cloned. These

criteria are specified to ensure an unam-

biguous correspondence between se-

quence and function.

At present, the GSDB is small but

growing; statistics are shown in Table 1.

While the total number of experimentally

characterized proteins is unknown, we

estimate the number to be well above

50,000. The open-source, collaborative

nature of COMBREX and partnering

databases, combined with extensive par-

ticipation from the scientific community at

large, will be required for comprehensive

identification of characterized proteins.

We encourage everyone to nominate the

proteins about which they have knowledge

using the simple submission form at the

COMBREX website (http://combrex.bu.

edu/gold_form; requires registration) and

to volunteer to help curate candidate

GSDB proteins.

A Community-Based Model

COMBREX was initiated in response

to a 2004 PLOS Biology editorial that

proposed a community-wide effort to

better understand the proteins encoded

in the genomes we are continuing to

sequence [1]. For success, the project

relies on community participation for

three major efforts: biochemical study of

proteins by experimental biologists, com-

putational function prediction by compu-

tational biologists, and manual curation of

experimental information in the GSDB.

The biochemical effort by COMBREX

is predicated on three principles: prioriti-

zation of experiments, parallelization of

effort, and dissemination of results. Since

we are limited to funding a relatively small

number of experiments, prioritization is

intended to guide us toward preferentially

funding those experiments that can tell us

the most not just about the specific

proteins under study, but about other

proteins for which these experimental

results can generate predictions. The

prioritization system, though rudimentary

in its current form, is formally grounded in

machine learning, specifically in active

learning theory [3,18,19] (see Text S1).

Dissemination of the experimental re-

sults of COMBREX grants involves up-

dating the GSDB, which leads directly to

the generation of computational functional

predictions for other proteins. The com-

munity of biologists relies heavily on gene

and protein ‘‘annotations’’ in public data-

bases for this predictive information, but

these have several long-recognized short-

comings: the process by which a given

annotation was generated is typically not

transparent, the information is not always

current with published literature, the error

rate among these annotations can be high,

and many lower-throughput methods of

functional inference are not utilized [20–

22]. Therefore, reliance on any one

database for the predictive evidence

COMBREX needs to effectively prioritize

proteins would be unwise. We have

therefore taken the approach not of

selecting or generating the single best

functional prediction for a given protein,

but rather serving as a repository of

predictions from many sources, which

can be compared and evaluated using

both statistical and biological criteria.

While we work closely with several groups

that specialize in benchmarking and

competition, we also seek to identify

methodologies that have complementary

capabilities. This approach opens the door

for the dissemination of results from

specialized algorithms for functional pre-

diction in a way not previously possible.

The emphasis on function predictions, the

documentation of evidence for these

predictions, and the prioritization of un-

characterized proteins for experimental

testing distinguish COMBREX from other

publicly available microbial genomics

resources such as IMG [23], SEED [24],

GOLD [25], BioCyc [26], and others,

each of which have their own unique

emphasis.

The GSDB project, which requires the

distillation of decades of published litera-

ture, also requires public participation

through what we envision to be a

crowdsourcing model. We have assembled

preliminary data through collaboration

with UniProt and with CharProtDB, a

partially curated set of proteins with

experimental evidence assembled by JCVI

to serve as a source of evidence for its

microbial genome annotation pipeline.

However, manual curation or wiki-style
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collaboration will ultimately be needed to

ensure the completeness of the informa-

tion and the precise linkage of sequence

and function. Our best hope for the

success of the fledgling GSDB is broad

participation from the experimental com-

munity in identifying characterized pro-

teins and performing the necessary cura-

tion.

The public participation encouraged

and required by COMBREX may have

the additional benefit of exposing younger

students to the biological sciences. The

small-scale grant model that COMBREX

has employed enables participation at the

undergraduate level for appropriately

equipped laboratories, since the necessary

assays are frequently straightforward, self-

contained in scope, and have technical

challenges that can easily be met by

beginning students with appropriate su-

pervision. Furthermore, curricula built

around teaching the techniques of cloning,

protein purification, and biochemical as-

say to multiple students can be readily

adapted to testing multiple related proteins

in parallel. As an example of COMBREX-

funded undergraduate participation, stu-

dents in one laboratory section at the

University of Virginia under the supervi-

sion of Linda Columbus were able to

successfully investigate biochemical activ-

ities and enzyme kinetics for three previ-

ously uncharacterized proteins: TM0441

(results of different substrates further

support the findings of Rodionova and

colleagues [27] [and see Text S1]) and

TM0542 from Thermotoga maritima, and

Ta0880 from Thermoplasma acidophilum

DSM1728 [28]. COMBREX hopes to

continue collaboration with this group

(http://biochemlab.org) and to replicate

these successes as part of an educational

component at numerous undergraduate

institutions.

Concluding Remarks

COMBREX is attempting to leverage

relatively scant experimental resources to

understand a large and growing collec-

tion of microbial proteins, the vast

majority of which will likely never be

directly functionally characterized. Com-

putational predictions must continue to

provide the basis for our understanding

of most proteins. It is imperative that

these predictions be as reliable as possi-

ble, and whenever possible, traceable to

the experiments that provided the evi-

dence for each prediction. When allocat-

ing experimental resources for this task,

not all proteins are of equal benefit. In

the most simplistic sense, characterization

of a judiciously chosen protein generates

or improves predictions for many other

proteins across many genomes, while

characterization of a protein related to

few or no other proteins (often referred to

as an ORFan [29,30]) may have a much

smaller impact. Despite the large number

of genome sequences already available,

new ORFans continue to appear at a

significant frequency, leading some to

estimate that the bacterial pan-genome

may be of infinite size [31]. This suggests

that a complete understanding of all

bacterial proteins may be impossible,

hence the need for prioritization. As an

alternative to complete understanding, as

proof of concept we adopted the twin

goals of pushing our overall understand-

ing toward the asymptote (by giving

priority to conserved genes) and working

toward the complete understanding of all

proteins in one or a few genomes (by

identifying ‘‘focus organisms’’). With

community participation on the experi-

mental, computational, and curatorial

sides, we feel these goals are within

reach.

Supporting Information

Figure S1 Pie charts showing relative

sequence similarity of uncharacterized

proteins in COMBREX to experimentally

characterized (green) proteins. (A) Blue

proteins. (B) Black proteins. Within each

pie, proteins are divided into those that

exhibit ‘‘strong’’ similarity, ‘‘weak’’ simi-

larity, or ‘‘no’’ similarity to characterized

proteins. Strong similarity requires a

BLASTP match of E#1e-05 along with

80% sequence identity along 80% of the

length of both query and hit, and identical

composition of domains as determined by

Pfam; these criteria are used by COM-

BREX to generate predictions, so all such

genes are blue by definition. Weak similar-

ity requires only a BLASTP match of

E#1e-05, with the aligned region covering

80% of the length of both query and hit,

with no other constraints; weak similarity

is not directly used to generate predictions

by COMBREX, hence a small portion of

black proteins satisfy these criteria. Con-

versely, as predictions for blue proteins

come from a number of sources, a

significant number of blue proteins do not

satisfy either the strong or weak sequence

similarity criteria and are categorized as

having no similarity to any characterized

protein.

(TIF)

Figure S2 Number of clusters as a

function of cluster size. Clusters are

broken down into three types based on

the functional status of their component

proteins: clusters containing $1 experi-

mentally characterized (green) gene are

represented by the green line; clusters

containing no experimentally character-

ized proteins but $1 protein with a

predicted function (blue) are represented

by the blue line; clusters where no proteins

have either a characterized or predicted

Table 1. Summary statistics for the GSDB.

GSDB Status COMBREX Status No. Genes

Total records 13,665a

Curated, accepted (GSDB) green (marked with G) 164

Curated, rejected blue 26

Not yet curated (GSDB queue) green 13,475

Source of Records

UniProt 4,017

REBASE 1,058

COMBREX 16

CharProtDB 8,574

aOf these records, 10,969 are currently represented in the COMBREX Database. The remaining records are primarily eukaryotic proteins.
doi:10.1371/journal.pbio.1001638.t001
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function are represented by the black line.

Cluster sizes are grouped with a bin size of

10, and in several instances a pseudocount

of 1 was added to 0 values to ensure

continuous lines in logarithmic scale.

(TIF)

Figure S3 Domain composition of pro-

teins in COMBREX. All COMBREX

proteins were clustered into groups based

on identical domain composition. Along

the x-axis, groups are separated based on

the number of annotated Pfam domains

per protein (as defined by Pfam). (A)

Histogram, where the green portion of

each bar indicates the number of proteins

that have identical domain composition to

an experimentally characterized (green)

protein, the blue portion those that have

identical domain composition to a protein

with a predicted function (blue), and the

black portion all others. (B) Same data

shown in logarithmic scale, where the

green, blue, and black lines represent the

sizes of the green, blue, and black portions

of the histogram bars in part A.

(TIF)

Figure S4 Flowchart of GSDB construc-

tion. Source information includes external

databases such as UniProtKB and other

databases (‘‘Source DBs’’), and genes

nominated by users via the COMBREX

website. All entries originating outside of

UniProtKB must be assigned a unique

UniProtKB accession number before entry

into the process. All candidates with a

UniProtKB accession number enter the

GSDB curation queue. After examination

by COMBREX curators, genes may be

accepted into the GSDB if they meet the

Gold Standard criteria. Those not accept-

ed are returned to UniProt for additional

research, and so that the UniProtKB

records may be appropriately updated if

necessary. Contents of the GSDB are

visible in COMBREX as green proteins,

where curated Gold Standard proteins are

labeled with a gold ‘‘G,’’ and proteins

awaiting curation are not. Proteins failing

the curation process join the blue set, like

all other proteins with no definitive

experimental information.

(TIF)

Table S1 Summary of proteins exam-

ined by COMBREX-funded projects.

(XLSX)

Table S2 Association of structural data

with uncharacterized proteins.

(DOC)

Table S3 Format of functional descrip-

tions in COMBREX.

(DOC)

Table S4 Free-text strings analyzed by

GOCat.

(DOC)

Table S5 Function predictions submit-

ted to COMBREX by external groups.

(DOC)

Text S1 More detailed description of

the following topics: selected COM-

BREX-funded experimental results;

functional inference from existing ex-

perimental information; use of struc-

tured vocabulary; and prioritization of

genes for experimental characterization.

Materials and Methods, including the

following topics: the COMBREX web-

site; functional status of genes; cluster-

ing of genes; semantic analysis of free-

text functional descriptions; and calcu-

lation of sequence distances within

clusters.

(DOC)
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