186 research outputs found

    Systematic analysis of pT -distributions in p + p collisions

    Full text link
    A systematic analysis of transverse momentum distribution of hadrons produced in ultra-relativistic p + p collisions is presented. We investigate the effective temperature and the entropic parameter from the non-extensive thermodynamic theory of strong interaction. We conclude that the existence of a limiting effective temperature and of a limiting entropic parameter is in accordance with experimental data.Comment: 9 pages, 5 figure

    Seriation and Multidimensional Scaling: A Data Analysis Approach to Scaling Asymmetric Proximity Matrices

    Get PDF
    A number of model-based scaling methods have been developed that apply to asymmetric proximity matrices. A flexible data analysis approach is pro posed that combines two psychometric procedures— seriation and multidimensional scaling (MDS). The method uses seriation to define an empirical order ing of the stimuli, and then uses MDS to scale the two separate triangles of the proximity matrix defined by this ordering. The MDS solution con tains directed distances, which define an "extra" dimension that would not otherwise be portrayed, because the dimension comes from relations between the two triangles rather than within triangles. The method is particularly appropriate for the analysis of proximities containing temporal information. A major difficulty is the computa tional intensity of existing seriation algorithms, which is handled by defining a nonmetric seriation algorithm that requires only one complete itera tion. The procedure is illustrated using a matrix of co-citations between recent presidents of the Psychometric Society.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    The \u3ci\u3eExxon Valdez\u3c/i\u3e Reopener: Natural Resources Damage Settlements and Roads Not Taken

    Get PDF
    The 1989 Exxon Valdez oil spill caused extensive natural resource damage to the Prince William Sound. Lawsuits addressing this natural resource damage resulted in a settlement that required Exxon to pay 900millionovertimetotrusteeschargedwithspendingthismoneytorestorethedamagedenvironmentoftheSoundandnearbyareas.Thesettlementincludeda“ReopenerClause,”whichpledgesExxontospendanadditional900 million over time to trustees charged with spending this money to restore the damaged environment of the Sound and nearby areas. The settlement included a “Reopener Clause,” which pledges Exxon to spend an additional 100 million to fund restoration or rehabilitation of resources whose injuries were not foreseeable in 1989. This Article urges the State of Alaska and the United States to seek enforcement of the Reopener Clause, to restore natural resources and Native subsistence uses that were not addressed in the initial settlement and have not recovered from the Exxon Valdez oil spill. Alternatively, this Article urges Native entities to intervene in the case and seek enforcement of the Reopener Clause. To date, neither Alaska nor the federal government have requested any of the $100 million Exxon may be required to pay to compensate for additional damages resulting from the oil spill. We offer extended comment on this most famous of all natural resource damage cases. Special attention will be paid to legal roads not taken

    Statistical Tests of Group Differences in ALSCAL-Derived Subject Weights: Some Monte Carlo Results

    Get PDF
    Several techniques to test for group differences in weighted multidimensional scaling (MDS) subject weights have recently been proposed. The present study presents monte carlo results to evaluate the op erating characteristics of two of these with ALSCAL- derived subject weights. The first uses the analysis of angular variation (ANAVA) on raw subject weights. The second applies the analysis of variance (ANOVA) to the flattened subject weights generated by ALSCAL. The ANOVA on flattened weights was less affected by the presence of error and by distortions caused by ALSCAL'S normalization routine than was the ANAVA.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Optical Spectra of SNR Candidates in NGC 300

    Full text link
    We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from optical spectra, we find that of 28 objects previously proposed as SNRs from optical observations, 22 meet this criterion with six showing [SII]/Ha of less than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated with the 28 previously proposed SNRs. Of these four, three (included in the 22 above) meet the criterion. In all, 22 of the 51 nebular objects meet the [SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc

    Classical Open String Models in 4-Dim Minkowski Spacetime

    Full text link
    Classical bosonic open string models in fourdimensional Minkowski spacetime are discussed. A special attention is paid to the choice of edge conditions, which can follow consistently from the action principle. We consider lagrangians that can depend on second order derivatives of worldsheet coordinates. A revised interpretation of the variational problem for such theories is given. We derive a general form of a boundary term that can be added to the open string action to control edge conditions and modify conservation laws. An extended boundary problem for minimal surfaces is examined. Following the treatment of this model in the geometric approach, we obtain that classical open string states correspond to solutions of a complex Liouville equation. In contrast to the Nambu-Goto case, the Liouville potential is finite and constant at worldsheet boundaries. The phase part of the potential defines topological sectors of solutions.Comment: 25 pages, LaTeX, preprint TPJU-28-93 (the previous version was truncated by ftp...

    A Search for Rapid Photometric Variability in Symbiotic Binaries

    Full text link
    We report on our survey for rapid (time scale of minutes) photometric variability in symbiotic binaries. These binaries are becoming an increasingly important place to study accretion onto white dwarfs since they are candidate Type Ia supernovae progenitors. Unlike in most cataclysmic variables, the white dwarfs in symbiotics typically accrete from a wind, at rates greater than or equal to 10^{-9} solar masses per year. In order to elucidate the differences between symbiotics and other white dwarf accretors, as well as search for magnetism in symbiotic white dwarfs, we have studied 35 primarily northern symbiotic binaries via differential optical photometry. Our study is the most comprehensive to date of rapid variability in symbiotic binaries. We have found one magnetic accretor, Z And, previously reported by Sokoloski & Bildsten (1999). In four systems (EG And, BX Mon, CM Aql, and BF Cyg), some evidence for flickering at a low level (roughly 10 mmag) is seen for the first time. These detections are, however, marginal. For 25 systems, we place tight upper limits (order of mmag) on both aperiodic and periodic variability, highlighting a major difference between symbiotics and cataclysmic variables. The remaining five of the objects included in our sample (the 2 recurrent novae RS Oph and T CrB, plus CH Cyg, o Ceti, and MWC 560) had previous detections of large-amplitude optical flickering, and we present our extensive observations of these systems in a separate paper. We discuss the impact of our results on the ``standard'' picture of wind-fed accretion, and speculate on the possibility that in most symbiotics, light from quasi-steady nuclear burning on the surface of the white dwarf hides the fluctuating emission from accretion.Comment: 24 pages, 17 figures. Submitted to MNRAS (12/21/00), and revised in response to referee comments (3/30/01

    Crises and collective socio-economic phenomena: simple models and challenges

    Full text link
    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the Random Field Ising model (RFIM) indeed provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilising self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of RFIM-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can badly fail at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria to be reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.Comment: Review paper accepted for a special issue of J Stat Phys; several minor improvements along reviewers' comment

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Correlation Testing in Nuclear Density Functional Theory

    Full text link
    Correlation testing provides a quick method of discriminating amongst potential terms to include in a nuclear mass formula or functional and is a necessary tool for further nuclear mass models; however a firm mathematical foundation of the method has not been previously set forth. Here, the necessary justification for correlation testing is developed and more detail of the motivation behind its use is give. Examples are provided to clarify the method analytically and for computational benchmarking. We provide a quantitative demonstration of the method's performance and short-comings, highlighting also potential issues a user may encounter. In concluding we suggest some possible future developments to improve the limitations of the method.Comment: Accepted to EPJ-
    • …
    corecore