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Statistical Tests of Group Differences
in ALSCAL-Derived Subject Weights:
Some Monte Carlo Results

Joseph Lee Rodgers
University of Oklahoma

Several techniques to test for group differences in
weighted multidimensional scaling (MDS) subject
weights have recently been proposed. The present
study presents monte carlo results to evaluate the op-
erating characteristics of two of these with ALSCAL-
derived subject weights. The first uses the analysis of
angular variation (ANAVA) on raw subject weights. The
second applies the analysis of variance (ANOVA) to the
flattened subject weights generated by ALSCAL. The
ANOVA on flattened weights was less affected by the
presence of error and by distortions caused by
ALSCAL’S normalization routine than was the ANAVA.

Multidimensional scaling (MDS) models have
traditionally been concerned with subjects as rep-
lications (classical MDS), subjects as points in the
stimulus space (unfolding), or subjects as vectors
in a weight space (weighted MDS). A logical ex-
tension is to consider groups of subjects, and to
ask. questions about group differences. Recently,
a statistical approach to test for group differences
in MDS subject spaces was presented. Schiffman,
Reynolds, and Young (1981) applied h4ardia’s

(1972, 1975) statistics of directional data to test
for differences between two or more groups in the

same way that the analysis of variance (ANOVA)
tests for group differences in linear data. The need
for two different techniques arises because of dif-

ferences in the raw data; subject weights are most
appropriately interpreted as angles (MacCallum,
1977), whereas ANOVA data are represented as points.
Distances between points may be very different
from angles between vectors (however, see Jones,
1983, who nevertheless recommended using linear
methods on subject weight angles).
As developed by Mardia (1972) and explained

by Schiffman et al. (1981) in the context of MDS
data, the ANOVA theory applicable to angles
(ANAVA) is based on the von Mises distribution,
the closest counterpart on the unit circle to the
normal distribution on the number line. The mean
direction is defined by averaging the unit normal-
ized weight vectors on each dimension. The length
of the mean direction vector is denoted R. The
resultant length is defined to be R = ~rclZ, where m
is the number of subjects. The most useful measure
of angular variation is a value S, which equals 1
- I?. Mardia (1972) showed how the total sum of

squared angular deviati&reg;ns-na,S-c&reg;uld be parti-
tioned into within and between group variation,
and he used the work of Watson and Williams

(1956) to show further that the ratio of mean square
between to mean square within is distributed as F

with (r - 1 )(q - 1) and (r - 1 )(~ra - q) degrees
of freedom when > .67 (r = number of dimen-
sions, q = number of groups, and m = total sam-

ple size). ~ardia’s development assumed that the
points were distributed as von Mises across the unit
circle, and assumed the counterpart of homogeneity
of variance.
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Several problems exist in the application of
ANAVA to subject weights, however. These were
discussed in detail in Schiffman et al. (1981) and
Jones (1983). The most relevant problem for the
purposes of this study is that ANAVA results ob-
tained from MDS subject spaces are not invariant
across different normalization procedures. Since
different procedures scale the points with different
means and variances, and in particular, the lengths
of the subject vectors have different meanings across
MDS algorithms, the ANAVA may be influenced by
what is an entirely arbitrary decision in the choice
of normalization procedures.

Schiffman et al. (1981) and Young (1982) de-
veloped a technique that may preclude the necessity
of using ANAVA. In their method, subject weights
are &dquo;flattened&dquo; into a space of dimensionality one
less than the original subject space. As presented
in Young (1982) and produced in the SAS version
of ALSCAL, flattened weights are derived by nor-
malizing each subject’s weights across dimensions
to sum to one, dropping the last dimension, and
then standardizing the remaining dimensions to have
a mean of zero and variance of one. This has the

effect of flattening arcs onto a line that is 45 degrees
to all dimensions. Young (1982) suggested that
these may be used with normal linear procedures,
so that problems in the use and interpretation of
ANAVA may be ignored altogether.
The purpose of the present study was to inves-

tigate the operating characteristics associated with
the use of ANAVA on raw weights and ANOVA on
flattened weights. Monte carlo procedures were used
to assess the empirical levels of alpha and power
in both null and noncentral cases. The procedure
involved (1) generating vaell-defined subject weights, 9
(2) using those to define subject spaces, (3) ana-
lyzing the data with ALSCAL, and (4) testing for
group differences in the raw and flattened weights.

Because of the problems mentioned above-par-
ticularly the arbitrary normalization procedure-
monte carlo methods are the only practical way to
assess the operating characteristics of these tech-
niques. It should be noted that only the normali-
zation procedure used by ALSCAL was considered.
The behavior of other normalization procedures in

other algorithms was not assessed, nor can the
ALSCAL results be generalized to other algorithms.

Method and Results

Overview

The results reported in this article were based
on a simulation written in SAS using the SAS macro
language to iterate the simulation (SAS Institute,
Inc., 19~29 p. 441). In this simulation, samples of
subject weights were generated as random von Mises
deviates with known parameters. Each set of weights
was applied to a common stimulus space, and the
coordinate values were then perturbed with random
normal error. These subject spaces were then sub-
mitted to metric ALSCAL, and two-dimensional so-

lutions were obtained. The derived raw and flat-
tened subject weights were analyzed with ANAVA
and ANOVA, respectively.
The generation routine was based on the fact that

the von Mises distribution can be closely approx-
imated by a normal distribution (with p = mean
angle and a = 1/‘~/k, k = the concentration pa-
rameter) for large k (Mardia, 1972, p. 60). Normal
deviates were generated randomly and transformed
to von Mises vectors on the unit circle. A number
of preliminary simulations were run to assure the
quality of this approximation and the efficacy of
the sample generation routine across a wide range
of means and concentration parameters. Chi-square
tests consistently supported that the generated an-
gles were indeed von Mises distributed. These re-
sults were reported in detail in Rodgers (1983).

In each case, the stimulus space that was used

was one obtained from Schiffman et al. (1981,
p. 177, dimensions 1 and 2), and was chosen be-
cause points were nonsystematically arrayed and
spread across both dimensions of the space. Both
dimensions were scaled to have standard deviations

of one and means of zero, so that in this case
~~.s~~t.’s normalization procedure (which scales
its solution to these values on each dimension) was
not taxed. In each condition, the simulated subjects
were divided in half either randomly (in the null
cases) or by design (in the noncentral cases). The
simulation was run 100 times in each condition,
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and the proportion of observed F values greater
than the critical value was tabulated. These pro-
portions corresponded to observed a in null cases
and observed power in noncentral cases. They were
tested statistically against theoretical a and power
with a binomial test by defining a 95% confidence
interval about the true value and observing whether
the generated value fell inside the interval.

Level of error was defined using Young’s (1970)
and Takane, Young, and deLeeuw’s (1977) monte
carlo studies as models. Random normal error was

added separately and independently to each per-
sonal space coordinate value on each dimension

prior to submission to ALSCAL. This is equivalent
to adding noncentral chi-square deviates directly
to the distances. Error levels were defined in units
of standard deviations of the original stimulus con-
figuration.
The ratio of variances was manipulated to ob-

serve how the ALSCAL normalization routine han-

dled true configurations in which the ratio of var-
iances was different from unity. This tests how the
two procedures handle different levels of distortion
due to the normalization procedure. To achieve
this, the second dimension of the original stimulus
configuration was multiplied by an expansion fac-
tor that took on values of 1, 2, 4, and 8; each of
these values reflected the ratio of the standard de-

viations, since the first dimension was not affected.

Of particular interest in the present context is
how ALSCAL recovers the raw data. Table 1 shows
the mean angles and concentration parameters of
the ALSCAL-derived subject weights in errorless data.
ALSCAL tends to move extreme angles slightly to-
ward the center, and tends to decrease angles at
the center. The concentration parameters are in-
creased by ALSCAL, implying a slightly tighter dis-
tribution about the mean angle than in the raw data.
Centralizing the mean angles would be expected
to reduce power, since existing group differences
are made smaller. Increased concentration would

have the opposite effect.
The specific details and results of each simula-

tion are reported together in the two sections that
follow. First, results of manipulating error, expan-
sion factors, noncentrality, and a are presented for
the ANAVA. Next, the equivalent manipulations are
shown for the ANOVA of flattened subject weights.

Tests of the ANAVA

The first simulation to test the ANAVA involved

generating data for 20 subjects, who were ran-
domly divided into two groups of 10. The manip-
ulations included in this null case were error level,
expansion factor, and a level. Five levels of error
were included, 0, .05, .1, .2, and .5. Four levels

Table 1

ALSCAL-Derived Mean Angles and Concentrations, Given

Population Mean Angle and Concentration (N=25 in Each Cell)
- --- - --
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of expansion were included, 1, 2, 4, and 8. Finally,
two a levels were tabulated, a = .05 and a = .25.
The higher a level was used so that a more sensitive
indicator of extreme conservatism would be avail-
able than for a == .05. The concentration parameter
was set to 8 and the mean angle to 45 degrees. The
mean angle was chosen because it splits the positive
quadrant, and the concentration parameter was

equivalent to a standard deviation of .3536 radians
or 20.3 degrees. Occasionally, angles were gen-
erated outside the interval from 0 to 90. When this

occurred, the angle was set back to the boundary
to prevent the possibility of imaginary distances.
An extensive preliminary simulation showed that
the ANAVA was highly robust to the deviations from
a true von Mises distribution caused by this pro-
cedure, even with lower concentration parameters
(up to standard deviations of 40 degrees).

Results of the first simulation are shown in Ta-

ble 2. The observed a levels were statistically equal
to the set as for 10 of the 20 cells at the .05 level

and 8 of the 20 at the .25 level; all others were

conservative. The pattern of results suggests that
with increasing error and/or increasing expansion
factors the level of conservatism increases. By in-
specting results for a _ .25, it is clear that extreme
conservatism is reached for error levels of .2 and .5.

In the second ANAVA simulation, the same ma-

nipulations were used in the noncentral case. Here,
the simulated subjects were separated into two

groups, whose mean angles were on opposite sides
and equal distances from 45 degrees. There were

two levels of noncentrality; the means were sepa-
rated by either one or two standard deviations (20.3
degrees and 40.5 degrees, respectively), and the
concentration parameter was set to 8. More subject
weights were generated that fell outside of the first
quadrant than before; again, these were placed back
onto the boundary. Set a had two levels (.05 and
.01), amount of error had two levels (.05 and .5),
and amount of expansion had two levels (2 and 8).
Finally, group size was 5 per group or 10 per group.
In each cell, the power that would have been ob-
tained using the ANOVA in an equivalent errorless
setting was computed using the Pearson and Hart-
ley charts (cf. Kirk, 1968, p. 540). A binomial test
was run to determine if the observed power of the

ANAVA significantly departed from that in the ta-
bles.

Results of this simulation are presented in Ta-
ble 3. In the errorless case with no expansion, six
of the eight powers were statistically equal to the
traditional ANOVA power. Otherwise, power was

consistently and significantly lower, and was par-
ticularly sensitive to increasing error level. These
results are compared with those from the ANOVA
on flattened weights simulations below.

Tests of the ANOVA

on Flattened Weights

The two simulations to test the ANOVA on flat-

tened weights were identical in all respects to those
described above. In fact, the ANAVA and ANOVA

Table 2

Proportion of ANAVA Rejections Out of 100 Samples with
Null ALSCAL Data for Five Error Levels, Four Expansion

Factors, and a=.05 (a=.25 in parentheses)

Note. The 95% confidence interval about true a=.05 is [.008, , .093].
The 95% confidence interval about true a=.25 is [.165, .335].
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Table 3
Power of ANAVA (100 Samples) for Non-Central ALSCAL Data,
Manipulating Two Levels of Expansion, Two Levels of Error,
Two Levels of Group Size, for a=.05 (a=.01 in parentheses) -

Note. The 95% confidence intervals about the traditional values were as
follows: a=.05 a=.Ol

aThe traditional ANOVA powers came from the Pearson & Hartley charts.

tests were applied to the same data; the flattened
subject weights were those produced from the same
runs in which the raw subject weights were pro-
duced above. This was done so that the ANAVA and
ANOVA solutions would be most directly compa-
rable, and not subject to possible sampling differ-
ences.

The results of the first ANOVA simulation-with
null data in which error level, expansion factor,
and a were manipulated-are presented in Ta-
ble 4. Results are considerably less conservative
than in the ANAVA. All values fell in the 95% con-

fidence interval defined about the set as. Inspection
of these results suggests no systematic trends across
level of error. There does appear to be a slight
increasing conservative bias as the expansion factor
increases, however; the mean as for set a = .05
were .048 for an expansion factor of 1, .038 for
2, .020 for 4, and .020 for 8. For set a of .25,
observed as were .266 for 1, .266 for 2, .246 for

4, and .236 for 8.
The power of ANOVA on flattened subject weights

is shown in Table 5. Power decreased systemati-
cally for increasing expansion factor, and was rel-
atively insensitive to error level. In the errorless
case with an expansion factor of 1, seven of the

eight powers were nonsignificantly different from
traditional ANOVA power. In all other cases, power
was significantly lower. However, attenuation of
power by increasing expansion factors was less
than for the equivalent ANAVA results presented in
Table 3.

Discussion

Jones (1983) outlined several approaches that
can be taken to analyze for group differences in
the subject weights produced from individual dif-
ferences MDS output. These include the following:
(1) the ANAVA on the raw subject weights; (2) the
analysis of the raw subject weights-angular data-
as if they were linear; (3) the analysis of subject
weights after they have been transformed (e.g.,
logarithmic transforgnations, see Coxon & Jones,
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1978, or inverse tangent transformations, see Bat-
schelet, 1981). Included in the third class is Young’s s
(1982) flattening technique, in which raw subject
weights are projected into a subspace of one fewer
dimensions than the original.
The purpose of the present study was to inves-

tigate the operating characteristics of two of these
methods that are based on ALSCAL-derived subject
weights. Preliminary results presented in Rodgers
(1983) showed that in the errorless case with equal
standard deviations on the two dimensions, both
the ANAVA of raw subject weights and the ANOVA
of flattened weights preserve the set operating char-
acteristics in both central and noncentral data. The

more realistic setting is, of course, the one in which
data are errorful and the normalization procedure
distorts the true structure of the stimulus space.

In this more realistic setting, the ANAVA was
rather conservative in the presence of large amounts
of error or considerable distortion due to normal-

ization. This was true particularly when the ratio
of the standard deviations of the dimensions was

greater than two, or when the level of normal error
had a standard deviation greater than one-tenth of
the less variable dimension. Whether the ANAVA
would be useful to an applied researcher would
depend on the amount of error expected and how
much the normalization procedure distorts the true
ratio of spreads between the dimensions. In the
presence of only slight distortion in both factors,
the ANAVA would be a useful technique.

The most useful result of these analyses for an
applied researcher is the relative robustness in the
flattened subject weights analysis. The use of the
traditional linear analysis, ANOVA, on the flattened
weights defined by ALSCAL was more robust than
the ANAVA to both the presence of error and nor-
malization distortion. In the null case, the tech-

nique was virtually insensitive to level of error.
The technique was slightly sensitive to normali-
zation distortion. The power of ANOVA on flattened

weights was attenuated by either error or normal-
ization distortion, as would be expected. The re-
duction in power was less than for the equivalent
ANAVA setting, however. These results suggest that
with either small or substantial error or normali-
zation distortion, an MDS researcher will be better
served analyzing the flattened subject weights than
the angular data to assess group differences.
The limitations of the present analysis should be

explicitly stated. First, all analyses were restricted
to the two group and two-dimensional setting. The
conduct of such monte carlo research is extremely
expensive, so that cost prohibited more complete
investigation of dimensionality and number of
groups. There seems no obvious reason to believe

results would not generalize to more groups and
higher dimensional settings, however. Second, all
MDS analyses were metric analyses; the consider-
ation of appropriate analyses to test for group dif-
ferences in the presence of monotonic (but nonlin-
ear) transformations of the raw subject spaces will

Table 4

Proportion of ANOVA Rejections for Flattened ALSCAL Subject Weights
Out of 100 Samples, with Null Data for Five Error Levels,
Four Expansion Factors, and a=&reg;05 (a=.25 in parentheses)

Note. The 95~ confidence !nterva1 about true a=.05 is [.008, .093].
The 95% confidence interval about true a=.25 is [.165, .335].
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Table 5
Power of ANOVA on Flattened ALSCAL Subject Weights (100 Samples) for
Non Central Data, Manipulating Two Levels of Expansion, Two Levels of

Error, Two Levels of Group Size, for a=.05 (a&reg;a0~ in parentheses)

Note. The 95% confidence intervals about the traditional values were as
follows: 

-- 

a=o05 
~-- 

a=.01

dTraditional ANOVA powers came from the Pearson & Hartley charts.

be left for future investigation. Third, only ALSCAL
results were considered. Results obtained with other
MDS algorithms s (e.~.9 ~~~,~gsc~.~ or INDSCAL) might
be different. not all of the possible methods
were investigated in the present study. The analysis
of raw angular data as if they were linear, and a
number of possible transformations besides the flat-
tening procedure used in ALSCAL, might also be
used. The two methods chosen for this study were
those that had been previously proposed in con-
nection with ALSCAL (Schiffman et ail . , 1981; Young, 9
1982).

Finally, the use of either ANAVA or ANOVA with
MDS subject weights involves two analytic models.
All of the assumptions of both the MDS model and
the ANOVA or ANAVA model make it seem rather

unlikely that the data really fit such a set of as-

sumptions. Thus, when true operating character-
istics are not preserved, it is not clear which of the
models is inconsistent with the data. One possible
solution would be to define an MDS distance model

for the express purpose of testing for group dif-
ferences, in the same way that Bloxom (1968),
Carroll and Chang (1970), and Horan ( 1969) ex-
pressly modeled individual differences.
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