40 research outputs found

    Results of salt intake restriction monitored with the new sodium control biosensor

    Full text link
    Adherence to a low sodium (Na) diet is crucial in patients under hemodialysis, as it improves cardiovascular outcomes and reduces thirst and interdialytic weight gain. Recommended salt intake is lower than 5 g/day. The new 6008 CareSystem monitors incorporate a Na module that offers the advantage of estimating patients' salt intake. The objective of this study was to evaluate the effect of dietary Na restriction for 1 week, monitored with the Na biosensor.A prospective study was conducted in 48 patients who maintained their usual dialysis parameters and were dialyzed with a 6008 CareSystem monitor with activation of the Na module. Total Na balance, pre/postdialysis weight, serum Na (sNa), changes in pre- to post-dialysis sNa (ΔsNa), diffusive balance, and systolic and diastolic blood pressure were compared twice, once after 1 week of patients' usual Na diet and again after another week with more restricted Na intake.Restricted Na intake increased the percentage of patients on a low-sodium diet (<85 Na mmol/day) from 8% to 44%. Average daily Na intake decreased from 149 ± 54 to 95 ± 49 mmol and interdialytic weight gain was reduced by 460 ± 484 g per session. More restricted Na intake also decreased pre-dialysis sNa and increased both intradialytic diffusive balance and ΔsNa. In hypertensive patients, reducing daily sodium by more than 3 g Na/day lowered their systolic blood pressure.The new Na module allowed objective monitoring of Na intake, which in turn could permit more precise personalized dietary recommendations in patients under hemodialysis.S. Karger AG, Basel

    Cryptococcus neoformans Capsular Enlargement and Cellular Gigantism during Galleria mellonella Infection

    Get PDF
    We have studied infection of Cryptococcus neoformans in the non-vertebrate host Galleria mellonella with particular interest in the morphological response of the yeast. Inoculation of C. neoformans in caterpillars induced a capsule-independent increase in haemocyte density 2 h after infection. C. neoformans manifested a significant increase in capsule size after inoculation into the caterpillar. The magnitude of capsule increase depended on the temperature, being more pronounced at 37°C than at 30°C, which correlated with an increased virulence of the fungus and reduced phagocytosis at 37°C. Capsule enlargement impaired phagocytosis by haemocytes. Incubation of the yeast in G. mellonella extracts also resulted in capsule enlargement, with the polar lipidic fraction having a prominent role in this effect. During infection, the capsule decreased in permeability. A low proportion of the cells (<5%) recovered from caterpillars measured more than 30 µm and were considered giant cells. Giant cells recovered from mice were able to kill the caterpillars in a manner similar to regular cells obtained from in vivo or grown in vitro, establishing their capacity to cause disease. Our results indicate that the morphological transitions exhibited by C. neoformans in mammals also occur in a non-vertebrate host system. The similarities in morphological transitions observed in different animal hosts and in their triggers are consistent with the hypothesis that the cell body and capsular responses represent an adaptation of environmental survival strategies to pathogenesis

    A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae)

    Full text link

    Single gene targeted nanopore sequencing enables simultaneous identification and antimicrobial resistance detection of sexually transmitted infections.

    No full text
    OBJECTIVES: To develop a simple DNA sequencing test for simultaneous identification and antimicrobial resistance (AMR) detection of multiple sexually transmitted infections (STIs). METHODS: Real-time PCR (qPCR) was initially performed to identify Neisseria gonorrhoeae (NG), Chlamydia trachomatis (CT), Mycoplasma genitalium (MG) and Trichomonas vaginalis (TV) infections among a total of 200 vulvo-vaginal swab samples from female sex workers in Ecuador. qPCR positive samples plus qPCR negative controls for these STIs were subjected to single gene targeted PCR MinION-nanopore sequencing using the smartphone operated MinIT. RESULTS: Among 200 vulvo-vaginal swab samples 43 were qPCR positive for at least one of the STIs. Single gene targeted nanopore sequencing generally yielded higher pathogen specific read counts in qPCR positive samples than qPCR negative controls. Of the 26 CT, NG or MG infections identified by qPCR, 25 were clearly distinguishable from qPCR negative controls by read count. Discrimination of TV qPCR positives from qPCR negative controls was poorer as many had low pathogen loads (qPCR cycle threshold >35) which produced few specific reads. Real-time AMR profiling revealed that 3/3 NG samples identified had gyrA mutations associated with fluoroquinolone resistance, 2/10 of TV had mutations related to metronidazole resistance, while none of the MG samples possessed 23S rRNA gene mutations contributing to macrolide resistance. CONCLUSIONS: Single gene targeted nanopore sequencing for diagnosing and simultaneously identifying key antimicrobial resistance markers for four common genital STIs shows promise. Further work to optimise accuracy, reduce costs and improve speed may allow sustainable approaches for managing STIs and emerging AMR in resource poor and laboratory limited settings
    corecore