14 research outputs found

    Barcodes of marine invertebrates from north Iberian ports: Native diversity and resistance to biological invasions

    Get PDF
    Ports are gateways for many marine organisms transported by ships worldwide, especially non-indigenous species (NIS). In this study carried out in North Iberian ports (Cantabrian Sea, Bay of Biscay) we have observed 38% of exotic macroinvertebrates. Four species, namely the barnacle Austrominius modestus, the tubeworm Ficopomatus enigmaticus, the Pacific oyster Crassostrea gigas and the pygmy mussel Xenostrobus securis, exhibited clear signs of invasiveness. A total of 671 barcode (cytochrome oxidase subunit I or 18S rRNA) genes were obtained and confirmed the species status of some cryptic NIS. Negative and significant correlation between diversity estimators of native biota and proportion of NIS suggests biotic resistance in ports. This could be applied to management of port biota for contributing to prevent the settlement of biopollutants in these areas which are very sensitive to biological invasions.VersiĂłn del editor2,359

    Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi

    Get PDF
    We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases, the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene, Eocene and Oligocene were key periods when diversification of major lineages within Parmeliaceae occurred, with subsequent radiations occurring primarily during the Oligocene and Miocene. Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associated with climatic shifts at the Oligocene–Miocene boundary. Moreover, diversification bursts at different times may be crucial factors driving the diversification of Parmeliaceae. Additionally, our study provides novel insight into evolutionary relationships in this large and diverse family of lichen-forming ascomycetes

    Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi

    No full text
    We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases, the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene, Eocene and Oligocene were key periods when diversification of major lineages within Parmeliaceae occurred, with subsequent radiations occurring primarily during the Oligocene and Miocene. Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associated with climatic shifts at the Oligocene-Miocene boundary. Moreover, diversification bursts at different times may be crucial factors driving the diversification of Parmeliaceae. Additionally, our study provides novel insight into evolutionary relationships in this large and diverse family of lichen-forming ascomycetes

    Nuclear physics midterm plan at Legnaro National Laboratories (LNL)

    No full text

    Nuclear physics midterm plan at LNS

    No full text
    International audienceThe next years will see the completion of several new facilities at Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud (LNS) opening up new possibilities in the fields of nuclear structure, nuclear dynamics, nuclear astrophysics and applications. These include a new line for high-intensity cyclotron beams, a new facility for in-flight production of radioactive ion beams, the PANDORA plasma trap for multidisciplinary studies and a high-power laser for basic science and applied physics. The nuclear physics community has organized a workshop to discuss the new physics opportunities that will be possible in the middle term (5–7 years) by employing state-of-the-art detection systems. A detailed discussion of the outcome from the workshop is presented in this report
    corecore