390 research outputs found

    HIV infection is an independent risk factor for decreased 6-minute walk test distance.

    Get PDF
    BackgroundAmbulatory function predicts morbidity and mortality and may be influenced by cardiopulmonary dysfunction. Persons living with HIV (PLWH) suffer from a high prevalence of cardiac and pulmonary comorbidities that may contribute to higher risk of ambulatory dysfunction as measured by 6-minute walk test distance (6-MWD). We investigated the effect of HIV on 6-MWD.MethodsPLWH and HIV-uninfected individuals were enrolled from 2 clinical centers and completed a 6-MWD, spirometry, diffusing capacity for carbon monoxide (DLCO) and St. George's Respiratory Questionnaire (SGRQ). Results of 6-MWD were compared between PLWH and uninfected individuals after adjusting for confounders. Multivariable linear regression analysis was used to determine predictors of 6-MWD.ResultsMean 6-MWD in PLWH was 431 meters versus 462 in 130 HIV-uninfected individuals (p = 0.0001). Older age, lower forced expiratory volume (FEV1)% or lower forced vital capacity (FVC)%, and smoking were significant predictors of decreased 6-MWD in PLWH, but not HIV-uninfected individuals. Lower DLCO% and higher SGRQ were associated with lower 6-MWD in both groups. In a combined model, HIV status remained an independent predictor of decreased 6-MWD (Mean difference = -19.9 meters, p = 0.005).ConclusionsHIV infection was associated with decreased ambulatory function. Airflow limitation and impaired diffusion capacity can partially explain this effect. Subjective assessments of respiratory symptoms may identify individuals at risk for impaired physical function who may benefit from early intervention

    Intestinal APCs of the endogenous nanomineral pathway fail to express PD-L1 in Crohn's disease.

    Get PDF
    Crohn's disease is a chronic inflammatory condition most commonly affecting the ileum and colon. The aetiology of Crohn's disease is complex and may include defects in peptidoglycan recognition, and/or failures in the establishment of intestinal tolerance. We have recently described a novel constitutive endogenous delivery system for the translocation of nanomineral-antigen-peptidoglycan (NAP) conjugates to antigen presenting cells (APCs) in intestinal lymphoid patches. In mice NAP conjugate delivery to APCs results in high surface expression of the immuno-modulatory molecule programmed death receptor ligand 1 (PD-L1). Here we report that NAP conjugate positive APCs in human ileal tissues from individuals with ulcerative colitis and intestinal carcinomas, also have high expression of PD-L1. However, NAP-conjugate positive APCs in intestinal tissue from patients with Crohn's disease show selective failure in PD-L1 expression. Therefore, in Crohn's disease intestinal antigen taken up by lymphoid patch APCs will be presented without PD-L1 induced tolerogenic signalling, perhaps initiating disease

    Patient-Specific 3D Printed Models for Education, Research and Surgical Simulation

    Get PDF
    3D printing techniques are increasingly used in engineering science, allowing the use of computer aided design (CAD) to rapidly and inexpensively create prototypes and components. There is also growing interest in the application of these techniques in a clinical context for the creation of anatomically accurate 3D printed models from medical images for therapy planning, research, training and teaching applications. However, the techniques and tools available to create 3D models of anatomical structures typically require specialist knowledge in image processing and mesh manipulation to achieve. In this book chapter we describe the advantages of 3D printing for patient education, healthcare professional education, interventional planning and implant development. We also describe how to use medical image data to segment volumes of interest, refine and prepare for 3D printing. We will use a lung as an example. The information in this section will allow anyone to create own 3D printed models from medical image data. This knowledge will be of use to anyone with little or no previous experience in medical image processing who have identified a potential application for 3D printing in a medical context, or those with a more general interest in the techniques

    The Great Lakes Hydrography Dataset: Consistent, Binational Watersheds for the Laurentian Great Lakes Basin

    Full text link
    Ecosystem‐based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods, we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great Lakes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134077/1/jawr12435_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134077/2/jawr12435.pd

    Data work: how energy advisors and clients make IoT data accountable

    Get PDF
    We present fieldwork findings from the deployment of an interactive sensing system that supports the work of energy advisors who give face-to-face advice to low-income households in the UK. We focus on how the system and the data it produced are articulated in the interactions between professional energy advisors and their clients, and how they collaboratively anticipate, rehearse, and perform data work. In addition to documenting how the system was appropriated in advisory work, we elaborate the ‘overhead cost’ of building collaborative action into connected devices and sensing systems, and the commensurate need to support discrete workflows and accountability systems to enable the methodical incorporation of the IoT into collaborative action. We contribute an elaboration of the social, collaborative methods of data work relevant to those who seek to design and study collaborative IoT systems

    Computational Eulerian Hydrodynamics and Galilean Invariance

    Get PDF
    Eulerian hydrodynamical simulations are a powerful and popular tool for modeling fluids in astrophysical systems. In this work, we critically examine recent claims that these methods violate Galilean invariance of the Euler equations. We demonstrate that Eulerian hydrodynamics methods do converge to a Galilean-invariant solution, provided a well-defined convergent solution exists. Specifically, we show that numerical diffusion, resulting from diffusion-like terms in the discretized hydrodynamical equations solved by Eulerian methods, accounts for the effects previously identified as evidence for the Galilean non-invariance of these methods. These velocity-dependent diffusive terms lead to different results for different bulk velocities when the spatial resolution of the simulation is kept fixed, but their effect becomes negligible as the resolution of the simulation is increased to obtain a converged solution. In particular, we find that Kelvin-Helmholtz instabilities develop properly in realistic Eulerian calculations regardless of the bulk velocity provided the problem is simulated with sufficient resolution (a factor of 2-4 increase compared to the case without bulk flows for realistic velocities). Our results reiterate that high-resolution Eulerian methods can perform well and obtain a convergent solution, even in the presence of highly supersonic bulk flows.Comment: Version accepted by MNRAS Oct 2, 2009. Figures degraded. For high-resolution color figures and movies of the numerical simulations, please visit http://www.astro.caltech.edu/~brant/Site/Computational_Eulerian_Hydrodynamics_and_Galilean_Invariance.htm

    A highly magnified candidate for a young galaxy seen when the Universe was 500 Myrs old

    Get PDF
    The early Universe at redshift z\sim6-11 marks the reionization of the intergalactic medium, following the formation of the first generation of stars. However, those young galaxies at a cosmic age of \lesssim 500 million years (Myr, at z \gtrsim 10) remain largely unexplored as they are at or beyond the sensitivity limits of current large telescopes. Gravitational lensing by galaxy clusters enables the detection of high-redshift galaxies that are fainter than what otherwise could be found in the deepest images of the sky. We report the discovery of an object found in the multi-band observations of the cluster MACS1149+22 that has a high probability of being a gravitationally magnified object from the early universe. The object is firmly detected (12 sigma) in the two reddest bands of HST/WFC3, and not detected below 1.2 {\mu}m, matching the characteristics of z\sim9 objects. We derive a robust photometric redshift of z = 9.6 \pm 0.2, corresponding to a cosmic age of 490 \pm 15Myr (i.e., 3.6% of the age of the Universe). The large number of bands used to derive the redshift estimate make it one of the most accurate estimates ever obtained for such a distant object. The significant magnification by cluster lensing (a factor of \sim15) allows us to analyze the object's ultra-violet and optical luminosity in its rest-frame, thus enabling us to constrain on its stellar mass, star-formation rate and age. If the galaxy is indeed at such a large redshift, then its age is less than 200 Myr (at the 95% confidence level), implying a formation redshift of zf \lesssim 14. The object is the first z>9 candidate that is bright enough for detailed spectroscopic studies with JWST, demonstrating the unique potential of galaxy cluster fields for finding highly magnified, intrinsically faint galaxies at the highest redshifts.Comment: Submitted to the Nature Journal. 39 Pages, 13 figure
    • 

    corecore