688 research outputs found

    Patient-Specific 3D Printed Models for Education, Research and Surgical Simulation

    Get PDF
    3D printing techniques are increasingly used in engineering science, allowing the use of computer aided design (CAD) to rapidly and inexpensively create prototypes and components. There is also growing interest in the application of these techniques in a clinical context for the creation of anatomically accurate 3D printed models from medical images for therapy planning, research, training and teaching applications. However, the techniques and tools available to create 3D models of anatomical structures typically require specialist knowledge in image processing and mesh manipulation to achieve. In this book chapter we describe the advantages of 3D printing for patient education, healthcare professional education, interventional planning and implant development. We also describe how to use medical image data to segment volumes of interest, refine and prepare for 3D printing. We will use a lung as an example. The information in this section will allow anyone to create own 3D printed models from medical image data. This knowledge will be of use to anyone with little or no previous experience in medical image processing who have identified a potential application for 3D printing in a medical context, or those with a more general interest in the techniques

    Genetic mixed stock analysis of an interceptory Atlantic salmonfishery in the Northwest Atlantic

    Get PDF
    Interceptory fisheries represent an ongoing threat to migratory fish stocks particularly when managed in the absence of stock specific catch and exploitation information. Atlantic salmon from the southern portion of the North American range may be subject to exploitation in the commercial and recreational salmon fisheries occurring in the French territorial waters surrounding St. Pierre and Miquelon off southern Newfoundland. We evaluated stock composition of Atlantic salmon harvested in the St. Pierreand Miquelon Atlantic salmon fishery using genetic mixture analysis and individual assignment with a microsatellite baseline (15 loci, 12,409 individuals, 12 regional groups) encompassing the species western Atlantic range. Individual salmon were sampled from the St. Pierre and Miquelon fishery over four years (2004, 2011, 2013, and 2014). Biological characteristics indicate significant variation among years in the size and age distribution. Nonetheless, estimates of stock composition of the samples showed consistent dominance of three regions (i.e., Southern Gulf of St. Lawrence, Gaspe Peninsula, and New-foundland). Together salmon from these regions accounted for more than 70% of annual harvest over the decade examined. Comparison of individual assignments and biological characteristics revealed a trend of declining fresh water age with latitude of assigned region. Moreover, locally harvested Newfoundland salmon were ten times more likely to be small or one sea winter individuals whereas Quebec and Gaspe Peninsula salmon were two-three times more likely to be harvested as large or two sea winter salmon.Estimates of region specific catch were highest for salmon from the southern Gulf of St. Lawrence region ranging from 242 to 887 individuals annually. This work illustrates how genetic analysis of interceptory marine fisheries can directly inform assessment and management efforts in highly migratory marines pecies

    Plasma Electronics

    Get PDF
    Contains reports on twelve research projects.United States Atomic Energy Commission (Contract AT(30-1)-3285)United States Atomic Energy Commission under Contract AT(30-1)-3221National Science Foundation (Grant GK-57

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: © 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Light Sterile Neutrinos: A White Paper

    Get PDF
    This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data
    • 

    corecore