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A. BEAM PLASMA DISCHARGE: SYSTEM A

A 100-turn, 0. 1-cm2 area diamagnetic probe is placed outside the beam generated

plasmal with the axis of the coil parallel to the beam and DC magnetic field. A sinus-

oidal signal of a few tens of millivolts appears on this probe2 at a frequency of approx-

imately 500 kc. Current collecting probes are inserted radially into the cylindrical drift

tube to collect currents at different azimuthal angles. The electron current collected

by these unbiased probes appears in 0. 2-4sec pulses synchronously with the diamagnetic

probe signal. The time-phase difference between the two current probe signals indicates

that we are observing a right-handed rotating (about the DC magnetic field) macroinsta-

bility. This phenomenon has been studied by Hartenbaum. Our rotation frequencies are

approximately 5 times higher than his, however. The sinusoidal oscillation on the dia-

magnetic probe only appears at relatively low pressures (<1. 4 4 Hg) and moderate mag-

netic field (250-600 gauss). Normally no radiofrequency is detected with the oscillation,

but when it does occur, it appears as spikes of ~0. 4-bsec duration. These X-band spikes

occur synchronously with the oscillation, as do x-ray pulses. The x-rays are probably

due to high-energy electrons that strike the walls and probes. It appears that the x-rays

striking the walls at one azimuthal angle, and the radiofrequency and electron current

at that same angle all occur at the same phase of the diamagnetic probe oscillation. The

RF may be radiated more, however, by the plasma striking the probes than by interac-

tions inside the plasma. This issue has not been conclusively resolved.

At pressures greater than -1. 4 i Hg, the RF no longer appears in "spikes," or short

bursts, but is radiated continuously. It is normally approximately 50 per cent amplitude-

modulated by a noiselike envelope. The intensities of this RF vs axial distance have been

measured, by using loop-type RF probes and wideband crystals. A plot taken at 2 I Hg

pressure is shown in Fig. X-l. Note the sharp drop in intensity as the point of minimum

magnetic field is approached. The density could be expected to have a maximum at the

*This work was supported in part by the National Science Foundation (Grant GK-57).
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Voltage of detected X-band radiofrequency vs distance from the anode.
(Magnetic field, 67 gauss; beam voltage, 8 kv; beam current, 0. 65 amp;
and gas is H 2 at 2 t Hg pressure.)

* BEAM CURRENT = 1.0a

x BEAM CURRENT = 0.65a

COLLECTOR

8 12 16 20 24 28

cm ( DISTANCE OF rf PROBE FROM ANODE)

32 36 40

Fig. X-2. Voltage of detected K-band radiofrequency vs distance from the anode.
(In both cases: pressure, 5. 5 4 Hg; beam voltage, 8 kv; magnetic field
for 0. 65-amp beam current, 180 gauss; for the 1. 0-amp beam current,
100 gauss; gas is hydrogen.)
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(X. PLASMA ELECTRONICS)

minimum field of a magnetic mirror. Hence, these data may have significance if the

radiation is due primarily to the coupling of longitudinal (k and E parallel) plasma waves

to transverse waves by scattering off density gradients. At higher pressures (5. 5 4 Hg),

there is no sharp change near Bmin. The RF may then either rise or fall in intensity

as the collector is approached (Fig. X-2).

Sometimes, a very clean oscillation in the envelope of the continuously radiated RF

is observed. At 5. 5 4 Hg or H 2 , 120 gauss, with an 8 kv, 0. 65-amp beam, this ampli-

tude modulation is 100 per cent. The envelope appears as 2-4sec pulses with a repeti-

tion rate of 1. 6 X 105 pps. This is near the expected frequency of the fundamental

standing ion acoustic wave. No azimuthal or longitudinal variation has been found in the

phase of this modulation.

J. A. Davis
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B. BEAM PLASMA DISCHARGE: SYSTEM C

1. HEATING OF IONS

Experiments are under way which have as their objective the heating of ions in a

beam-plasma discharge. The proposed scheme involves modulating the beam collector

with radiofrequency power of frequency equal to the ion cyclotron frequency in the center

of the mirror. Conditions under which ion-cyclotron waves can be launched from the

TO BEAM
COLLECTOR

Fig. X-3. Diagram of apparatus.
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collector and dissipated in the resonance region will be investigated.

As a first experiment, the impedance of the collector as a function of frequency and
discharge parameters is being measured. For this measurement, the apparatus shown

in Fig. X-3 has been constructed. In operation, at a variable time during the discharge,
gate I produces an adjustable-frequency RF pulse of 200- jsec duration which serves as
a source for the RF bridge. Approximately 50 Isec after initiation of the RF, gate II
turns on a detector that stays on for 100 4sec. The detector consists of a tunable, R-C

active filter that simulates a high-Q (-1000) tank circuit followed by a highpass filter.

It represents the optimum linear, time-invariant filter for maximum signal-to-noise

ratio.1

First results have shown that Re Z, the real-part of the impedance seen at the col-

lector, has the following characteristics: (i) for w < ci, it is -1. 5 ohms and relatively
independent of w; (ii) in the vicinity of w ci/2, it exhibits a small resonance; and (iii) it

increases rapidly as w approaches wci (Wci is the ion-cyclotron frequency measured in

the center of the mirror). At the present time, more complete data are being taken and

work has begun on a theoretical model.

R. R. Parker
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2. ELECTRON TEMPERATURES
1

Following a method outlined by Griem, the electron temperature in the beam

plasma discharge System C was determined from the ratio of line to continuum inten-

sities. This method was selected because it is accurate at the low electron densities

encountered (~1013/cm3). Also, the ratio does not depend on the electron density, which

may vary spatially and with time. A pure hydrogen plasma was used.

The continuum radiation is caused by Bremsstrahlung and by recombination of free

electrons to bound hydrogen states with n > 3. The line-intensity formula presupposes

a Maxwellian distribution. The intensity ratio is given by

I1m 4. 2 X 105 fg exp((Ei-E)/kT)

XAX(gff/2)(kT/E) + (g/n 3 ) exp(Ei/n 2 kT)
n=3

where f is the line oscillator strength, g is the statistical weight of the lower state of

the transition, E. is the ionization energy for a ground-state atom, E is the emitted

photon energy, wavelengths are given in angstroms, and gff and gfb are the free-free
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Fig. X-4. Intensity ratios for four Balmer lines.

and free-bound Gaunt factors 2 which are approximately unity. Figure X-4 is a plot of

these ratios for four Balmer lines over the relevant temperature range.

A half-meter Ebert plane grating monochromator was used for the intensity meas-

urements. The entrance slits were removed so that a wide band of the continuum could

be observed. Continuum intensities were measured at two wavelengths above and below

the line and were averaged. Any weak H 2 lines were avoided. The continuum intensities

were subtracted from the line intensities when they were comparable in magnitude.

Results indicated an electron temperature of approximately 13 ev. Deviations from

the Maxwellian distribution did not affect results greatly because the threshold energies

for the relevant reactions were less than the temperature, kT.

Further details of this measurement and other spectroscopic measurements on Sys-

tem C will be found in the author's thesis. 3

P. E. Newton
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C. BEAM PLASMA DISCHARGE: SYSTEM D

From the beginning, System D has been something of a disappointment in that its per-

formance was no better, and probably worse, than its smaller predecessor, System C.

The problem centered mainly on what we called "axial breakdown." This manifested

itself as a burst of current: electrons to the collector and ions to the cathode. The burst

would appear soon after a beam-plasma discharge (BPD) had been established. Since this

current burst could reach a peak value five to ten times the normal beam current of

10 amps, this burst would act as a "crowbar" and effectively shut off the discharge. The

excess current usually limited the maximum beam power to less than 100 kw, and often

to less than 50 kw.

After some time, we realized that the magnitude of the excess current corresponded

very closely to the rate of generation of new ion-electron pairs caused by diffusion of

neutral gas into the plasma. Thus, it seemed that the excess current could be eliminated

if the ambient neutral density surrounding the plasma could be reduced. It appeared that

a pulsed gas feed might help. In normal (previous) operation, gas is fed in continuously
-4

and pumped out to maintain an H2 pressure of -10 torr. The new configuration with

the pulsed gas feed is shown in Fig. X-5.

Figure X-6 shows x-ray decay with time. The curve was plotted with a 400-channel

MIRROR VACUUM MIRROR
PEAK ENVELOPE PEAK

-6 -p 10- 6 torr 1 P 10 torr H2 GAS

45 INPUT
S 40 TO

PUMP
VIEWING VIEWING BEAM COLLECTOR
PORT PORT

ELECTRON GUN FAST PULSED
10 KV, 10 A, 700 pL SEC GAS VALVE

MIRROR RATIO 6:1
MIDPLANE FIELD 600 GAUSS

DIMENSIONS IN INCHES

M. I. T. BEAM PLASMA DISCHARGE SYSTEM D

Fig. X-5. System D: showing location of pulsed gas valve.
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X-ray decay with time. Vertical scale
indicates number of counts (logarithmic
scale) and horizontal scale, time. Major
divisions are 0. 2 sec. Upper curve is
without lead shield and lower curve is
with lead shield.

Fig. X-7.

In each frame, upper trace is the out-
put of x-ray scintillator, and lower
trace is the diamagnetic signal AB.
Time scale: 20 msec/cm. Calibra-
tion of the AB trace is 16 gauss/cm.
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analyzer operated in the scaling mode. The upper curve was taken with the scintillator

looking at the 1/4 inch thick glass window. The lower curve was taken with a 5/17 inch

thick lead shield placed in front of the scintillator. From this attenuation we infer an

x-ray energy of 350 kev. The exponential decay time measured from the upper curve

is 0. 26 second. The neutral pressure at the beginning of the decay was 3 X 10-5 torr.

This places the electron temperature at 60-70 kev if we assume that the decay is by

electron-neutral scattering.

Figure X-7 shows some traces of integrated diamagnetic probe signals and x-ray

scintillator outputs. The diamagnetic signal corresponds to the flux density (AB) change

within the plasma because of its transverse energy. The uppermost curve shows a

smooth decay, whereas the other two show sudden drops resulting from some instability.

The maximum expelled flux (AB) was ~50 out of 660 gauss (the mirror ratio was 6, and

most measurements were made with a center field of 660 gauss).

Figure X-8 shows light decay and diamagnetic signal with "simultaneous" instabili-

ties. It has been observed that a burst of x-rays precedes the sudden drop in light or

LIGHT
DIAMAGNETIC SIGNAL

Fig. X-8. In each frame, upper trace is the light and
lower trace, the diamagnetic signal, AB.
Time scale: 50 msec/cm. The AB calibra-
tion is the same as in Fig. X-7.

AB signal by approximately 1 msec. After the burst, the x-ray level returns to its value

just before the burst. The AB drop lags the light drop by a smaller interval. Both AB

and light drop nearly to zero. We offer no explanation for the observed timing sequence

or the nature of the instability.

The valve (a commercial unit) was placed just back of the collector and was driven
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by a small pulser (2D21 thyratron, 10 tf, 150 volts). The beam pulse was delayed

approximately 2-5 msec from the valve pulse. This delay was adjusted empirically for

"best operation. "

The presumed operation is as follows: The optimum delay presumably corresponds

to a time when the gas is still concentrated inside the collector. Thus the beam initiates

a BPD in the dense gas and the plasma so produced diffuses out ahead of the gas into the

magnetic mirror where the electrons are further heated by the beam-plasma interaction.

The neutral gas remaining in the collector is now forced to diffuse through the energetic

plasma before entering the main drift tube. If the plasma is dense enough, very little

neutral gas will escape without being ionized. If this model is correct, one would expect

to find a much more energetic plasma, since there would be little cooling by the low-
-6

pressure (<10 torr) ambient gas.

Experiments made within the last three weeks seem to confirm this model. The most

dramatic effects are: (i) that the "mirror-shaped" plasma can be seen (visually) to glow

during the entire interpulse period of 1-2 sec; (ii) the x-radiation has increased to more

than 100 mR/hr; (iii) there is no sign of excess current to the cathode so the gun oper-

ates as if it were in vacuum.

Some of the oscillograms describing the behavior of the system are shown below.
-6

During operation, the ambient (base) pressure was 0. 8-1. 0 X 10 torr. The valve was

adjusted to admit approximately 1-5 X 1017 molecules per pulse (this was estimated from

the pump speed - 1000 k/sec and the average H 2 pressure over the interpulse period

= 10 - 5 torr). We have not yet observed the pressure transient of the gas at the collector,

but we suspect that a substantial amounts of gas drools out after the beam pulse ends

(700 4sec), and serves no useful purpose.

L. D. Smullin, W. D. Getty, T. Musha, R. R. Bartsch

D. INSTABILITIES OF TRANSVERSE WAVES ALONG THE MAGNETIC FIELD

In a previous report plasma instabilities in transverse waves propagating along the

magnetic field were presented. 1 The plasma system was assumed to be composed of

stationary neutralizing ions penetrated by electrons with an unperturbed velocity-space

distribution of the form

f (v-Vo) 6(v -v 0 1 ), (1)
o(V) 2 TrV 0.1_02 1(6 il -VOll),0-I

where vL and vll are the velocities perpendicular to and along the magnetic field. Insta-
2

bilities of transverse waves were first reported by Weibel. Sudan has considered an

anisotropic Maxwellian distribution employing the instability criterion of Penrose.3-5

He obtained the real wave number range over which the instability exists as a function

of T/T 1 . In the present analysis the criterion of Bers and Briggs is used, in order

QPR No. 78 105



(X. PLASMA ELECTRONICS)

to classify the instability as convective or absolute. 6

This report deals with some of the effects of finite electron temperature on the beam-

type distribution of Eq. 1. Under the assumption of an exp j(wt-kz) dependence of the

field quantities, a simultaneous solution of the relativistic Vlasov equation and Maxwell's

equations yield the dispersion equation

2

c 2 k2  -I m dv dvL 2 p
2 - 1 - dd 2 f0(vdv vL )

_ - k_ vi (k -w /c )
X + 2 b) 2  (2)

where the minus and plus signs are for right- and left-polarized waves, respectively.

The distribution function for the electrons is taken to be

1 [ (v-v0 2 (v 011 2

0() = exp 2v 2  exp v- 2  (3)
VT III(v0) 2v 2vTII

where vTI I = (TIl/m)1/ 2 is the thermal velocity along the field, vT (T/m)1 / 2 is the

thermal velocity across the field,

I(v 0 ) = 2 T exp ( + v2Tv0± + erf (-

Iv T  T VT ]

is a normalization factor, and

2 -u
erf (x) =- e du.

From Eq. 2 we then find the dispersion relation:

2 2 (k2 2

c 2 k 2  1 H(g) o - (+l+H())
2 2 _ H() 2 2 22 i "( - kvT w k vT4l

X + VT i Vo TI(2r)3/2 1 + erf 0- ,i (4)

where
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H(,) = 1 e Z de- ;x d S ' Im a < O

- kvoII - b

wZ- kvT II

and H( ) is related to the plasma dispersion function, Z(a), of Fried and Conte through

analytic continuation. 7

H() = Z( ) - j e-

Figure X-9 gives the locus of real k in the complex-frequency plane for various

-3 -2R -1 2 3 4 5 6b

-3 -2 -1 1 2 3 4 5 6

-0.01

Vo1 =0.3
C -0.02

V =0.3
C

VTI -0.03
=0.0

C

kC

S-T 0.01
SC

kC =3

Wb

i / wb

Fig. X-9. Real wave number locus in complex-frequency plane for various
thermal velocities.

electron temperatures. The temperature across the field is zero so that the distribution

function and dispersion equation reduce to

1 r-2f0(V) V-v exp (vi-v011
0 /2) exp 2 (5)

(2ir) VTIIVI 0TII
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2
2 k2  pc 2 k

2 -2
¢ a

22 2 2 / 2

1- H(v 11w 22 (1+H()).kv 2k v

The transcendental equation (5) was analyzed with the aid of the Project MAC time-

sharing system. The method employed is similar to that reported by Lieberman. 8

Figure X-9 demonstrates the damping of the short wavelength instability by longitu-

dinal temperature. The long wavelength instabilities are undamped for the temperature

ranges considered. Note that temperature across the field will not contribute to the

damping. The location of the absolute instabilities was reported in the previous report

and their temperature dependence is now under study.

Some analysis has been done on determining the physical mechanism that gives rise

to the instabilities. It has been determined that there are two distinct effects. The insta-

bility near zero wave number is due to a relativistic change in the cyclotron frequency

of the electron as it interacts with the electromagnetic wave. For zero wave number,

the magnetic field is unimportant and the electric field is space-independent and (right-

hand) circularly polarized at a frequency w. Figure X-10a shows an electron whose

velocity vector is in the direction of the electric field at t = 0. This electron will give

(a) (b)

Fig. X-10. Relation between in-phase electron and electric field for
W > obo: (a) t = 0; (b) t = 27T/.

(a) (b)

Fig. X-11. Relation between antiphase electron and electric field for
W > bo: (a) t = 0; (b) t = 2 T/w.
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Fig. X-12. (a) Relativistic dispersion showing instability at k = 0.
(b) Nonrelativistic dispersion showing absence of zero

k instability.
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up energy to the field and relativistically its mass will decrease. Thus the cyclotron

frequency of the electron is increased. If the frequency, w, of the electric field is

slightly greater than the unperturbed cyclotron frequency of the electron, Wbo' then the

electron will remain in phase with the field durings its orbit, as shown in Fig. X-lOb.

The electron gives up energy to the wave throughout its orbit. Figure X-11a shows an

electron whose velocity vector is 1800 out of phase with the electric field at t = 0. This

electron will take energy from the field and its mass will increase. Thus its cyclotron

frequency is decreased. If the electric field frequency is greater than the unperturbed

cyclotron frequency, this electron will fall out of antiphase. Thus the antiphase electron

gains less energy from the wave than the in-phase electron gives up, and the wave will

grow in time. The computer solutions of the dispersion equation with the distribution

function of Eq. I used indicate that the zero wave number instability is at w > Wbo. A

nonrelativistic analysis fails to yield these small wave number instabilities as demon-

strated by Fig. X-12.

Work is, at present, being done to establish the physical mechanism for the insta-

bilities at large wave number. In this region the first-order magnetic field plays an

important role.

E. A. Robertson, A. Bers
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E. INSTABILITIES OF LONGITUDINAL WAVES ACROSS THE MAGNETIC FIELD

We have been studying longitudinal waves in a uniform plasma. By solving the lin-

earized, relativistic Vlasov equation self-consistently with Maxwell's equations, it has

QPR No. 78 110



(X. PLASMA ELECTRONICS)

been shown that longitudinal waves with dependence exp j(t- k T) satisfy the dispersion

relation, k K k= 0:

0o d p
1 dvi v 3 dv Z T2 2f 0 Xspecies 0 I

v- dp n 2 n
_c _ nkl d n(Pkvnw)Lv b c 2 (p 0, (1)
nOC (w-kl v ll-nob) (w-kllV -nw b)

where f 0 = f 0 (v ', vII) is the unperturbed velocity distribution function for each species,

Jn(p) is the nth-order Bessel function of the first kind and argument p = (k vi)/'b v

is the component of the velocity parallel to the magnetic field, v_ is the magnitude of

the velocity transverse to the magnetic field, and kll and k 1 are the components of the

propagation vector, parallel and perpendicular to the magnetic field. Note that Wb and

w are the relativistic cyclotron and plasma frequencies, and thus are functions of
P

velocity.

We shall consider a background of infinitely massive ions, free electrons that have

an unperturbed velocity distribution of the form

1
f (V)  6(v -v 0 ) 6(v 1 ), (2)

and shall limit this study to waves propagating perpendicular to the magnetic field, k =

ixk. The dispersion relation then becomes

2
p 2 p 2 (p) 2 2
1 2 n-1 (.n+1 ( 2 = 0, (3)

2 b n=-0 nb n=-oc

where = vO/wb. This dispersion relation is se.n to differ from that reported by

Harris, Dory, and Guest 2 by the addition of the second sum which is the relativistic cor-

rection.

In this report we shall discuss the interaction near w = 0 which Harris and his

co-workers termed the "zero-frequency mode." Arguing from the nonrelativistic dis-

persion relation, they predicted that for w > 4. 13 we instabilities should exist in which

the real part of the frequency was identically zero. These were reported to appear

approximately for bands of real values of p: 2. 4 < p < 3. 83, 5. 52 < p < 7. 02, 8. 65 <

p < 10. 17, etc. In this report we enlarge upon their findings by actually calculating the

QPR No. 78 111



0.2

0.1

Fig. X-13.

0.9

0.8

0.7

0.6

0.5

0.4

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6
k_ vo

p

Growth rates

Sp/wb = 7. 3.
for the first band of the "zero-frequency" instability

S= 0.5

10 12 14

Spo /c

20 22 24

Fig. X-14.

QPR No. 78

Maximum growth rate of the first band as a function of OpO/W c

112



(X. PLASMA ELECTRONICS)

growth rates (Im w) for the first band, and show how they appear in the relativistic for-

mulation. Figure X-13 illustrates the results of a numerical investigation of the first

band, under the assumption of a density much greater than the predicted threshold value.

Note that the growth rate within the band is normalized to the nonrelativistic cyclotron

frequency w , and wb is related to w by the expression

b = e 1P-P 1)/2. (4)
b c I

The region of instability for P1 = 0 lies entirely within the approximate band predicted

by Harris, Dory, and Guest. The other two curves of Fig. X-13 show the effect of the

relativistic correction. The magnitude of the growth rate decreases with increasing I,

as does the width of the band of real p values. The value of p for maximum growth

rate remains constant, however, at a value of p ~ 3. 1. Figure X-14 shows how this

maximum growth rate depends upon the ratio wp0/c. Here wp0 is the nonrelativistic

plasma frequency related to w by the expression = p0(1-i )1/4. Note that the 0j =0

branch does indeed have a threshold at (wpo/c) = 4. 13. Increasing p0/w c increases

the growth rate until it saturates at a value given approximately as w. 5 0. 81w . The1 c

effect of the relativistic correction is to increase the threshold of wp0o c and decrease
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Fig. X-15. Relativistic dependence of "zero-frequency" density threshold
klvl
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the saturation value of the growth rate. Figure X-15 is a plot of %- against the threshold

value of pO/ c . This value of wp0/ c will be termed the density threshold. This curve

separates the first band of the zero-frequency mode into a stable region and an unstable

one. Note that the larger the value of _I, the greater the density must be in order for

the instability to occur.

The study of the dispersion relation (3) continues. This more complete study is not

limited to the zero-frequency mode but also considers the interactions at the cyclotron

harmonics.
A. Bers, C. E. Speck
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F. DYNAMICS OF THE PLASMA BOUNDARY

The motion of electrons near a boundary between a neutralized slab of plasma and

free space is being investigated. This study has been undertaken to provide a more com-

plete understanding of wave propagation in finite plasma systems.1 2

The geometry of a neutral plasma slab in its equilibrium state is shown in Fig. X-16.

It consists of a region, which has thickness d in the x direction and is infinite in the

y and z directions, over which electrons and ions are uniformly distributed with a num-

ber density n o (particles per unit volume). The electrons have charge -e, and the ions

+e, so that the system is neutral. If the electron cloud is uniformly displace a dis-

tance 5 (in the x direction) from the ion cloud, an x-directed electric field will be pres-

ent. The spatial variation of this field is shown in Fig. X-17. It can be seen that
en

if 6 << d, most of the electrons experience the same electric field, E = o 0. Under
o

x

d

z y

Fig. X-16. Neutral slab in equilibrium.
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Fig. X-17. Uniform displacement of the electron cloud and generated electric field.

the assumptions that the ion cloud is stationary and the electron cloud moves as a rigid

slab, the equation of motion for the electron slab (5 << d) is

2
d26 en

m d 5, (1)
dt2  Edt o

where 6 is the displacement of the electron cloud from its equilibrium state, and m is

en
the mass of an electron. According to Eq. 1, the slab oscillates at frequency w= / m

0 0

which is the plasma frequency, w = p . It is clear from Fig. X-17, however, that the
p

electrons near the top of the electron cloud (the part that has been displaced outside the

ion background) do not experience the same restoring force as those that are inside.

Since the electrons are not "tied" to each other as a rigid slab, but are separate par-

ticles, they will not move synchronously.

In order to follow the individual particles, a discrete model of the plasma slab has

been studied. The continuous charge density of ions and electrons that was uniformly

distributed over the thickness d is replaced by N ion sheets and N electron sheets par-

allel to the y - z plane and spaced uniformly in the x direction so that their separation

is (d/N-1) in equilibrium. (In equilibrium, the ion and electron sheets are placed on

top of each other pairwise so that the electric field is zero.) Each sheet contains S o par-

ticles per unit area.

Perturbations from equilibrium may be studied by displacing the N electron sheets

from the ion sheet background. The ion sheets are assumed to be stationary, while the

electron sheets are allowed to move individually in the x direction. The electron sheets

can pass freely through the stationary ion sheets, as well as through each other.

The equation of motion for the kt h electron sheet is
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2
d Xk

m 2 -eEk' (2)
dt

where xk is the position of the kth sheet measured from x = 0, and E k is the average of
ththe x-directed electric field on either side of the k electron sheet. Figure X-18 shows

a system of 5 electron and ion sheets subject to an initial perturbation of 2 electron

ELECTRON
SHEET

ION
SHEET

- ----

z Y

CIRCLES ( 0 ) INDICATE
THE ELECTRIC FIELD FELT
BY THE ELECTRON SHEETS

E,
eso  2 eso
Eo E0

Fig. X-18. Sheet model of the plasma slab.

Fig. X-19. Slab dynamics.
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sheets displaced outside the ion sheet background. The electric field distribution in the

presence of this perturbation is also shown in Fig. X-18. Note that the outermost elec-

tron sheet experiences a different electric field from the other 4 electron sheets. It can

be seen that in this planar geometry, the electric field Ek acting on a particular sheet

does not change until an electron sheet passes through an ion sheet or another electron

sheet. At all times between crossings Ek is a constant, so that each sheet experiences

a constant acceleration. The motion of each sheet is found by solving Eq. 2, the electric

field being recalculated each time a crossing occurs.

Figure X-19 shows the motion of each sheet as a function of time for a slab modeled

by 5 electron and ion sheets which has the initial perturbation shown in Fig. X-18. The

central group of electron sheets oscillates initially at a frequency w = c , where

e2NS
0

w =
p Emd

0

1.6

1.2

0.8

0.4

O

-0.4

-0.8
1 2 3 4

Fig. X-22. Slab dynamics.
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Overtaking occurs between the two top sheets after a time which is approximately

t = 21/ . Eventually, overtaking takes place between other sheets and the system

appears to go toward a chaotic state.

Figures X-20 and X-21 show the dynamics of a slab modeled by 11 sheets. In

Fig. X-20, the initial perturbation is taken with two electron sheets outside the ion back-

ground, while in Fig. X-21, three sheets are initially displaced. The amplitude of the

oscillations is larger than in Fig. X-20 but again the core of the electron sheets begins

to oscillate at w . Then overtaking sets in and the slab becomes scrambled.
p

Finally, in Fig. X-22, the motion of 21 sheets in a slab is shown.

From comparison of Figs. X-19 through X-22, it appears that the coherent oscilla-

tion of the central core of electrons at frequency Ap persists for a longer time as the

number of sheets in the model is increased.

This sheet model of the plasma slab will be applied to a slab with nonuniform density.

The work will be extended to include the ion-sheet motion, as well as a thermal spread

of velocities. The effect of an applied AC electric field will also be investigated.

H. M. Schneider, A. Bers
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G. ELECTRON CYCLOTRON RESONANCE DISCHARGE*

In the last quarter, we reported a measurement of the plasma density in the inter-

pulse period by a new microwave perturbation technique. In previous reports2,3 meas-

urements of long-time decay and the plasma electron "temperature" were reported. In

this report, we give a physical explanation of the observed phenomena.

The dependence of the plasma density with time as shown in the last report 4 can be

very well explained by the following ideas. The ionization time of hot electrons at

4. 3 X 10-4 torr is approximately 2. 5 4sec, according to Barnett, Ray, and Thompson. 5

Thus in the microwave-pulse time (1 [sec) the plasma electron density changes only

slightly, and the principal effect produced by the pulse is to heat electrons already pres-

ent to large energies. These hot electrons produce new electrons by ionizing the back-

ground gas in the interpulse period, thereby making up particle losses and providing a

new group of cold electrons to be heated by the next microwave pulse. The decays of

plasma measured at long times 2 are evidence of the escape of the hot electrons from the

magnetic-mirror field.

Let us assume that after a pulse, all of the electrons are hot and that these electrons

decay exponentially with a characteristic loss frequency ah. We shall also assume that

the hot electrons produce cold electrons through ionizing collisions with the background

gas. The cold electrons do not produce further ionizations and are lost from the system

at a frequency ac. Writing a conservation equation for the cold electrons nc gives

dn -at
dt v.n e h - n , (1)
dt 1 O C C

where v. is the ionization frequency of the hot electrons against the background gas. The

solution of this equation is

nc = V (eh - e . (2)
c ac - ah

The time dependence of the plasma electron density as given by (2) agrees well with that

found experimentally. 4 Thus the experimental results can be used to find values for the

parameters used in Eqs. 1 and 2. The initial slope of (2) is

dnc = v.n . (3)
dt t= 0 o

After using the previous data 4 to find n and dnc we find a value of the ionization
o dt t=0'

*This work was supported principally by the United States Atomic Energy Commis-
sion under Contract AT(30-1)-3221.
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frequency vi which agrees within 20 per cent of that given by Barnett and his

co-workers.5

The value of loss frequency of the cold electrons can be obtained from the point where

the rate of change of plasma density with time is zero. This gives a characteristic loss

time (1/ac) of approximately 30 4sec which may represent the time in which the average

ion is lost from the system.

A full report on this experiment is available in the form of an Sc. D. thesis presented

by T. J. Fessenden to the Department of Electrical Engineering, M. I. T., June 1, 1965.

L. D. Smullin, T. J. Fessenden
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H. COMPUTER STUDY OF BEAM-PLASMA INTERACTIONS

Theoretical investigations are being carried out with the intention of gaining a better

understanding of the interactions between beam and plasma waves. With the aid of Proj-

ect MAC and the Computation Center, M. I. T., dispersion equation solutions can be

obtained which would be difficult, and in many cases impossible, to achieve by using a

coupling-of-modes approach. The following report describes some of the initial results

of these beam plasma-computer studies.

Fe(v)

Vo

Fi ( )

ELECTRON DISTRIBUTION ION DISTRIBUTION

Fig. X-23. Distribution functions.

Under the assumption of an infinite plasma composed of warm electrons and cold ions

(see Fig. X-23) and a z-directed magnetic field, quasistatics gives the following dis-

persion relation:

(,k)= 2  k2  2 2A (w, k) = p + k -
pi2

2

pe ka3 ka(Ska

component of propagation

component of propagation

= ion plasma frequency

= ion cyclotron frequency

p
±2

C

2 k 2  p 

"pb 2 2 }
(-kVo)2 (o-kVo)2

-Ccb

2
2 c c

SZw - Z wce2 +2 kaw L ka ka
a ce

vector perpendicular to magnetic field

vector parallel to magnetic field

This work was supported principally by the United States Atomic Energy Commis-
sion under Contract AT(30-1)-3221.
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Opb = beam plasma frequency

W cb = beam cyclotron frequency

V = beam velocity

a = N X thermal velocity

pe = electron plasma frequency
pe

ce = electron cyclotron frequency

vH = velocity parallel to magnetic field

v± = velocity perpendicular to magnetic field

and

2

Z(u) = eX dx.
-o x - u

pv
In obtaining Eq. 1, it was assumed << 1, and consequently no cyclotron harmonics

b

appear.

For u >> 1,

Z(u) -- I + I +- 3"
u 241S2u 4u

ce o
Therefore, if it is assumed that ka and w are large compared with one, and

only enough terms of the series above are used to give the lowest order temperature

variation, the dispersion relation becomes

2 2
A(,k) p2 + 2  2 k2 p2 2 k2  p2

-pi 2 2 pb 2 2 2
o o - ci 0 Wcb

k2 p 3 k4a2 1 pka (
_k 3 ka 2+2

-pe 2 c 2 2  ) + 2 3 ce
ce -e

This dispersion relation was programmed for the computer and complex roots of k

were obtained for real o. The results for two sets of plasma parameters are shown in

Figs. X-24 and X-25. The dotted lines are beam asymptotic lines, and the solid lines

represent solutions of real k for real c. The axes are not drawn to scale but in such

a way that the nature of the solutions can be easily seen.

For Fig. X-24, the parameters are as follows:

V = 1 X 108 meters/seco
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a = 1 X 106 meters/sec

p = 100 /meter

o = 4 Gc
pe

W = 1 Gc
pl

Wpb =0.75 Gc

W =3 Gc
ce

W . = 0.5 Gc
cl

For frequencies above the plasma frequency, /o + Wi, the beam waves are
/pe pi

easily distinguished. For frequencies below the plasma frequency, the cyclotron waves

behave as coupling of modes would predict. The space-charge waves become modified,

however, by the dielectric constant of the plasma.

For Fig. X-25, the parameters are as follows:

7V = 5 X 107 meters/seca = 0.2 X 107 meters/sec

p = 1000 /meter

w = 90 Gc
pe

O .= 2 Gc
pl

pb = 10 Gc

W = 3 Gc
ce

Wc .= 0.001 Gecci

For this case, the beam plasma frequency was greater than the electron cyclotron

frequency. The cyclotron waves behave as might be expected. The modification of the

beam space-charge waves by the plasma below the plasma frequency is more evident

here than in Fig. X-24.

A preliminary investigation of the convective growth rates predicted by this disper-

sion relation indicates that they are in the neighborhood of 1 db/cm in the region between

2 2
w and pe + wpi Further work is being done to investigate the growth rate for

different plasma parameters.

B. R. Kusse
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I. NONADIABATIC DIFFUSION IN TOROIDAL GEOMETRY

Work continues on the construction of a race track-shaped magnetic field device for

trapping an electron beam.1

In order to cancel drifts of the electrons, we impart a rotation to the field line in the

"U" bends of the race track. These fields are produced by helical conductors that cause

the field lines to rotate around the axis as they traverse the U bend; however, they leave

at a different radius at the exit than at the entrance. To correct this, we add a field cor-

rection at the entrance and exit of the U bend which will make all field lines that enter

on a circle leave on a circle, that is, circularizers. Figure X-26 shows the results of

Fig. X-26. Preliminary results of circularizer calculations for two input conditions.

This work was supported principally by the United States Atomic Energy Commis-
sion (Contract AT(30-1)-3285).
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a circularizer calculation.2 The field lines are plotted in a coordinate system rotating

with the conductors; this takes advantage of the symmetry of the field. Rin is the radius

of the field line at the entrance, and Rout is the radius at the exit. An ideal circularizer

would have Rin = R out

We shall continue the development of a Rogowsky coil for measuring trapped beam

current. A fluorescent screen and a fluorescent grid are being made for beam detection.

R. W. Moir, L. M. Lidsky
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J. MAGNETIC NONADIABATIC SCATTERING IN THE MAGNETOSPHERE*

This report is an attempt to relate the studies of nonadiabatic scattering phenomena

in magnetic-mirror machines to a possible scattering mechanism in the earth's magne-
1-4tosphere. In a number of papers electromagnetic waves have been proposed as scat-

tering centers for particles in the earth's Van Allen belts. Such scattering is necessary,

since the effect of particle-particle interactions is not sufficient to explain the observed

density distribution in this region.

Helliwell I has proposed a synchronous acceleration of electrons trapped in phase

with waves in the whistler mode. Parker Z discounted the relative importance of this

mechanism on energy grounds. He substituted a much smaller instantaneous nonadia-

batic acceleration of the trapped particle as the whistler frequency passed through local

cyclotron resonance. Since the whistler electric field is small and the energy transfer

depends on phase which is essentially random, Parker proposed a diffusion coefficient

to describe the mechanism. Later Dragt3 presented similar arguments to arrive at the

conclusion that protons are lost by scattering from hydromagnetic waves.

In general, then, the scattering mechanisms that have been proposed depend on some

sort of cyclotron resonance of the particle with the wave's electric field. This type of

interaction may be called an inelastic collision, since energy is added or subtracted from

the particle. The elastic scattering from the wave's magnetic field is ignored. In the

synchronous mechanism of Helliwell, the electron gains several Mev per interaction;

under these conditions, neglecting the wave magnetic field is perhaps justifiable.

Under the conditions considered by Parker and Dragt, such an assumption is not jus-

tified. Plasma waves can have phase velocities much less than the speed of light, and

the ratio of the magnetic force to the electric force on a particle is

vB/cE = v/vp ,

where v is the particle velocity, and v is the wave's phase velocity. This ratio can

be large for conditions prevailing in the magnetosphere. One consequence of this is that

even if the wave frequency does satisfy the cyclotron resonance condition, the energy

transfer to the particle is bounded. The wave's magnetic field pushes the particle out

of phase when the particle's velocity becomes the order of the wave phase velocity.

An estimate of the maximum energy change caused by the wave's electric field can

easily be obtained.

If the electron's laboratory velocity is given by

vL = z +

This work was supported principally by the United States Atomic Energy Commis-
sion (Contract AT(30-1)-3285).
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its velocity in a frame moving with the wave phase velocity is vR = ( " -t ) + '. In thisR zp 2
frame the particle sees only a static magnetic field, and its energy, 1/2 mvR , is con-

served. The wave magnetic field is unchanged if v << c, and it can only rotate the vec-
p

tor vR. The inelastic electric scattering is contained in the subsequent transformation

back to the laboratory frame. The maximum energy change is

(AW) v -v ,
max 2 R

or

(-W)-my V .(AW)max p z

For a 50-kev electron moving along the earth's field in the L = 2 shell scattering from

a 5-k/sec whistler, we find

(AW)max 200 volts.

The magnetic elastic scattering is at least as large. If the particle satisfies the non-

adiabatic resonance condition

2rr(v -vp) = X. B ,

where X is the whistler wavelength, it will experience a maximum magnetic scattering. 5

An estimate of the magnitude of this scattering can be obtained from Laing and Robson 6

who show that

2
2 C (nh) ,

2
vR

where n is the number of wavelengths traveled before the particle falls off the resonant

peak, and h is the ratio of the wave's magnetic field to the local earth's field. Previous

computations have shown 6 that for n = 10 and h = 0. 05,

2
v
-= 0. 6.2

vR

The rotation of the particle's velocity vector in the field of a whistler (B=ly) at L = 2

(BE - 103y) is, then,

2 2
n 10-3 0. 6.2 10 X . 05

vR

If we assume that the particle interacts with approximately 100 wavelengths,
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2
v

- = 0. 24.2
V
R

This is sufficient to trap the particle. Nonresonant particles would be affected to a

lesser extent, but it is clear that if the scaling used above applies, scattering from the

wave's magnetic field may be a significant factor in determining the population of the

radiation belts. The applicability of the scattering theory, which has been developed to

describe particle confinement in mirror machine nonadiabatic fields to the earth's mag-

netosphere is being considered.

J. F. Clarke
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K. INCOHERENT SCATTERING OF LIGHT FROM A PLASMA. I.

Preliminary signal-to-noise calculations for incoherent scattering of a laser beam

from a plasma have been made, with the object of determining the feasibility of using a

modulated argon continuous wave (cw) gas laser in place of a pulsed ruby system for a

small-angle scattering experiment.

Spectral measurements of the light emission from a Hollow Cathode Dischargel

hydrogen plasma were made by using a Jarrell-Ash monochromator, RCA 7265 photo-

multiplier, and a black-body emitter for calibrating the absolute intensity. A schematic

view of the experiment arrangement is shown in Fig. X-27. At the wavelengths of inter-

est, 5145A for an argon gas laser and 6943 A for a ruby laser, the measured emission

7265 MONO-
PM CHROMATOR VIEWING LENS

ARC

VIEWING

VACUUM DUMP
PUMPS

Fig. X-27. Observation of plasma luminosity.

-8 -1 -8 -1
is Z10 - 8 watt A steradian and =3 X 10 - 8 watt A-1 steradian-l, respectively. Also,

a 3 A bandpass filter at 6940 A was used with the photomultiplier output, either DC or AC

coupled to an oscilloscope. With the geometry and photomultiplier properties known, the
-8 o -1 -l

equivalent measured DC emission was 3 X 10 watt A steradian at the ruby

line (in agreement with the monochromator measurement); and the AC emission was
-11 ° -1 -1

l. 5 X 10 watt A steradian With the detection system employed, the AC signal

corresponds to the thermodynamic fluctuation level of the direct current. Since in fact

the fluctuations in the light represent the noise of the system, the last figure is the

important one.

One may calculate the expected emission from a hydrogen plasma, by computing the

This work was supported principally by the United States Atomic Energy Com-
mission (Contract AT(30-1)-3285).
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Bremsstrahlung and radiative recombination 2 for the plasma of interest for scattering
14 -3experiments, using the approximate electron density ne = 10 cm , and electron tem-

perature T = 2.4 ev. We note that for recombination radiation to be centered neare
5145 A or 6943 A, corresponding to 2.41 and 1.78 ev, respectively, only recombination

to states n > 3 contributes. For T = 2.4 ev, it is readily determined that the free-e
bound radiation is of the order of the free-free radiation at 5145 A. Calculating the

-8 -free-free radiation, we get for the parameters above 2 X 10 watt A for a
3volume of 1 cm at the argon line. Thus the expected emission for a fully ion-

-8 -1ized hydrogen plasma is z4 X 10 watt A which compared with the measured
value is nearly the same (the discrepancy depending on the effective solid angle
of emission). For purposes of computing signal-to-noise we shall use the meas-

ured values.

A laser with its extremely coherent, monochromatic output enables measurement of

wavelength shifts in the scattering of light waves from a plasma, and thus is receiving

considerable attention for plasma diagnostics. The theory of scattering of electromag-
1 X .0netic radiation from a plasma indicates, that for a parameter a = - - sin- > 1

SAkXD 4D

(where X is the incident wavelength, XD is the Debye length, 0 is the angle between inci-
dent and scattered wave vectors), the scattered power spectrum changes from one char-
acteristic of free-electron scattering to one characterizing the density fluctuations

in a plasma. As a result, an enhancement of scattering at a frequency shift
Av = pe is predicted, and we are attempting to observe this scattered signal at 0 = 2 .

This observation angle gives a value a = 2 for
14 -3

n = 10 cm and T = 2.4 ev. Neglecting theSIGNAL
optical design to eliminate non plasma-scattered

SIGNAL AND light from entering the detector, we can calculate

the signal-to-noise ratio for plasma-scattered
BACKGROUND light versus plasma luminosity.

Fig. X-28. Calculation of signal- Modulating the laser and detecting synchron-

to-noise ratio. ously, we obtain ideally a signal-to-noise ratio

from the following picture (Fig. X-28). We

assume Poisson statistics to describe the shot-noise effect. In measuring the back-

ground B for a time t b , we have a total count of

B =bt ±< 4 ,p b

where b = photons sec-1 emitted because of the self-luminosity of the plasma; and when

detecting signal plus background for time t s , the count is

S + B = (s+b)t ±v/T(s+b)ts,
s s
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where s is scattered phonons sec - 1 . Subtracting, we find that the measured signal is

<S> = [(s+b)ts-btb ] ± (s+b)t s + btb,

t
or for t = tb =, where t = integration time,s b 2'

t t t
<S>= s- s + 2b-

2 2 2

for a signal-to-noise ratio

t s/2

eff ,// +bt /s/2 +b

For an angular resolution AG = 1/2 , scattering length 1 cm, and incident power Po
at 5145 A wavelength, the expected scattered power per angstrom, per unit solid angle,

-13 0.-1 -1
P ( 2, X) is equal to or greater than 9 X 10 P o watt A steradian Thus with an

annular ring 0 = 20, Ae = 1/20 and Ak = 0. 1 A (with a Fabry-Perot interferometer used
-16

for the required resolution) the scattered power detected is P > 1. 7 X 10 P watt.
-12

The background luminosity detected is PL =1. 9 X 10 watt. Since at 5145A the photon
-1

energy is 2.4 ev, the equivalent scattered signal and background are 450 Po photons sec
6 -10

and 5 X 106 photons sec into the detection optics. If the transmission of a narrow

bandpass filter is To, and that of a polarizer is T1 for the polarized component and T 2

for the unpolarized (where T 2 = T 1 /2, since 50 per cent of unpolarized light is in each

polarization), and the quantum efficiency of a photocathode is E; the scattered signal
-1

detected is 450 PoTIToE photons sec . Thus the signal-to-noise ratio is

s/2

225P T T E

106

5 X10 T 2  E

ET
= 0. 1Po t,

since s << b. For T = 0.5, T = 0.8, T = 0.4, and E = 0. 1 (PM response at 5100 A) as

typical values we have

( = 0.029P -.
N o
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Thus for P 10 watts (at present an upper bound on the power available external

to the cavity of an Argon gas laser), an integration time of 100 sec is necessary

for ) = 2. 9. It thus becomes readily apparent that a cw laser at these relatively

low powers would necessarily be operated intracavity; better than an order of mag-

nitude in optical power is obtained, thereby reducing the integration time by two

orders of magnitude.

The relative signal-to-noise calculations for pulsed ruby lasers may be calculated

for (i) a l-msec 100-joule pulse, and (ii) a Q-spoiled system with typically a 20-nsec

1-joule pulse.

The l-msec pulse emits 3.5 X 1020 photons of energy at 1. 8 ev, and the scat-
-13 -1 5 -p -3

tered number is N = 9 X 10 N ( 2) photons A 6 X 10 photons A in 10 sec
s 0 5 -1

with the same angular factors. The background luminosity is Nb = 1. 6X10 photons A

For 0. 1A bandwidth, the signal and noise are Ns = 6 X 10 photons and N b = 1. 6

104 photons. With the transmission factors T o , T T 2 and quantum efficiency ,

the signal is

S=N T T 1 c ± NTT + 2NT T E

for

N T + ZN bT
sl b2

or since T = 0. 5, T= 0.8, T = 0.4, E - 0.02 (PM response at 6940 A), ( 19.5.

Similarly, for a 20-nsec pulse of 1 joule, the scattered photons N = 600 and
s

N b = 0, whereby the signal-to-noise (leaving out the polarizer, since it is not required)
is

(- =NN TE = 2.5.(N s o

We may conclude, then, that a normally pulsed ruby or an argon cw gas laser is to

be preferred over a Q-spoiled ruby laser, and that for reasonable integration times the

argon and ruby lasers give comparable signal-to-noise.

In terms of beam divergence, however, the gas laser is distinctly superior to a

pulsed ruby laser, and this is a significant factor when observing at small angles

to the incident direction. Furthermore, the thermal shift in wavelength output of a

ruby laser is an even more severe problem, since in fact 0. 1 A resolution is desired.

Thus it may be concluded that a cw intracavity plasma scattering experiment is feas-

ible, insofar as signal to noise is concerned (when the noise arises only from the

luminosity of the plasma and not the stray scattered light). The desirability of the
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cw experiment is increased when one considers the need for low-beam divergence

and nonvariant wavelength. The attendant problems of beam divergence and scat-

tering of laser light from surfaces in the are are to be the subject of more inten-

sive investigation.

A. A. Offenberger
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L. AN INPUT-OUTPUT APPROACH TO THE PROBLEMS OF OPTIMAL CONTROL

1. Introduction

A new method has been developed for the solution of certain types of optimal control

problems by taking the system description as an input-output relation. The system is

assumed to be represented byl

i.
j - , r

y(t) = H(u(t))= . (l' h2 .... j) . C (u; l, 'a2' . j) d I do-2 ... d j,

j=l i=l o

(1)

where the input u(t) and the output y(t) are r- and n-vectors, respectively, the n-vector
th -th

h ij(a,- 2 ... 0' j) is the ith component of the j -order kernel of the system,

Ci(u; -l, a' .. , a-.) is the i possible j-tuple product of the components of the input

vector u(t), each factor in the product having -, z2, ... or a- as its argument, and ij, r
is the total number of such products.

A typical statement of an optimal control problem may be: Given a system described

by the input-output relation, Eq. 1, find the input u(t) that brings the output to some pre-

scribed terminal value and, at the same time, minimizes the cost functional

((t)) = t' (y(t), u(t)) dt, (2)

where Y is a scalar-valued operator. The input u(t) belongs to some constrained

or unconstrained space, and the terminal time, tl, may be specified or left

unspecified.

The significance of approaching an optimal control problem through an input-output

type of representation lies mainly in the fact that a direct measurement of the charac-

teristics of an unknown system results, in general, in an input-output relation. In some

cases, however, even for the systems whose characteristics are known through a set

of differential equations, the input-output approach to the optimal control problems sig-

nificantly lessens the computational complexity, and more than offsets the trouble of con-

verting the differential equations into an input-output form. It is well known that the

systems described by a set of linear differential equations have an equivalent represen-

tation in the form of input-output relations. It has recently been reported that a class

of nonlinear systems which can be represented exactly by a finite number of linear sys-

tems and multipliers also possess such a property.2 Another potential significance of

the present approach is that we can write the cost functional as an explicit function of

the input
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(u(t)) = 1 _(H(u(t)), u(t)) dt. (3)

o

The explicit dependence of Eq. 3 on u(t) may facilitate the optimal control problem at

hand, particularly when H is nonlinear.

We shall develop the method of solving such optimal control problems. We shall con-

sider the case in which u(t) is unconstrained and the cost functional is

= ,1l <u(t), u(t)> dt, (4)

O

where < a, b > is the scalar product of a and b. Linear systems with constrained input

will also be considered. The results are found to be the same as those derived by other

workers by means of the maximum principle. 3

2. Unconstrained Input Problems

We shall now consider only multiple-input linear systems and single-input nonlinear

systems. The extension of the method to multi-input nonlinear systems is conceptually

straightforward, except that we have to introduce much more involved algebraic and

notational complexities.

a. Linear Systems

Let the dynamical system be represented by

r

y(t) = h(t; ) u. () do- (5)

i= 1 o

We wish to bring the output vector to 9 at a given terminal time t l. The problem is to

find the input vector u(t), t -< t < t , such that the terminal condition

Y(tl) = 1 (6)

is satisfied and the cost functional

r

= t <u(t), u(t)> dt = 1 u (t) dt (7)

o o i=

is minimized.

Writing Eq. 5 at the terminal time, we have

r
r = hil (t; o) u i(-) do-. (8)

i= 1 o
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At the outset, let us assume that all of the n-elements of h.(t ; o) are of the same func-
1i1

tional character. We shall say that the two functions a(t) and b(t) are of the "same func-

tional character" if both can be written as a finite linear sum of the members of a

consistent infinite set of linearly independent functions. For instance,

1, t, t2  tn

form a consistent infinite set, and the functions

a + bt 2

and

ct + dt3 + et4

are of the same functional character. We call such a consistent infinite set a "charac-

teristic set" to a(t) and b(t), and the orthonormal set of functions {n(t)} built up from

this characteristic set a "characteristic orthonormal set." The range of orthonormality

is [tot l ]. With this nomenclature, let us expand each element of the vector hi(tl; -) and

ui(c) in terms of the characteristic orthonormal set.

L.

J J

f=1

u. (= i ()i, (10)

where {n(O-)} is the orthonormal set of functions characteristic to the index i.

Substituting Eqs. 9 and 10 in Eq. 8, we obtain

Lr l

= J IB

i=1 2=1

r L2

12 A B ( 1)

i=1 = 1

The inputs of the form (10) will satisfy the system and the terminal conditions exactly
i iif the coefficients B2 , i = 1, 2 ..... r and 2 = 1, 2, .... L , satisfy the relations (11),
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ii
where L is the largest of the L. for j = 1, 2 ... , n. Clearly, the coefficients B1 for

2 > L , i = 1, 2, ... , r, may have arbitrary values. Therefore, it follows that the set

of feasible inputs W is the set of all inputs of the form (10) whose coefficients satisfy

(11). If W is nonempty, it contains an infinite number of elements.

Let us now consider Eq. 11. There are

r

L= Li  (12)

i= 1

unknown coefficients B to determine, while there are n-relations among them. Three

situations may arise.

(i) L < n. Since the n-relations of (11) are linearly independent, we find that it is

impossible to satisfy the system and the terminal conditions. In other words, the fea-

sible set W is empty, and there does not exist an input that performs the prescribed

task.

(ii) L = n. In this case, we can uniquely determine the coefficients.

(iii) L > n. This will be the most usual case encountered in practice. We determine

the first n of the L coefficients in terms of the rest. Let us write this

Bk= fk(Bn+, Bn+ 2 .. . BL) k =1, 2,..., n. (13)

Here, we have renumbered the coefficients B by affixing a single index k, k 1, 2,

. , n.

Now, using (10) in (7), we find

L 0C

= B+ B (14)

2= 1 k= L+1

for L = n, and

n L

6= f (Bn+ Bn+2 .. BL) + 1B3 +  B (15)

2=1 2=n+l1 =L+1

for L > n, using the same renumbering of the coefficients. It is clear that the cost func-

tional, Eq. 14 or Eq. 15, is continuously differentiable in all of the coefficients Bk. Fur-

thermore, the extremum of / with respect to Bk for any given k is attained at the

values of Bp given by

8/
S0. (16)

8B

This is unique by virtue of the simple quadratic dependence of / on B . We also assert
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that this unique extremum is a minimum by noting that

2 / 2 f= m

aB aBSB (17)
m 0 m.

Let us consider the determination of the optimal input for the case L > n. The case

of L = n will become obvious. In order to find the minimum of (15), let us differentiate

it with respect to B , p > n + 1, and set the derivatives to be zero.

/ n f

B f (Bn+ .. BL) ( B n+ .. BL) + B = 0

B p

p

Equations 13, 18, 19 provide all of the necessary relations to completely determine the

optimal input. If we denote the coefficients obtained by solving (13) and (18) by Ba , the

optimal input is

Li

u (t) = B (t) i = 1, 2 ..... r. (20)
= 1

EXAMPLE 1: Consider a system given by

xl(t) = 1 + t Y2 + (t-a) u(o) da

x2(t) = 2 +  u(a) d-.

Let us find the input that brings the outputs to the origin at t = T, and minimizes

= T u 2 (a-) da-

0

At the terminal time

-a 1 -Ta 2 = (T-o-) u(o) do-

-a2 = u(o-) do-.
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The characteristic set of orthonormal functions is

elt)= 1/~ 02 ( t )  1 - t'V T .

Expanding the kernels in terms of this set, writing

u(a-) 7 B (

and using these in the equations written at t = T, we have

Minimization of /

B2 - 12 + B

2
= B2 gives B = for k > 3.

k=1

= arbitrary for f > 3.

Therefore, the optimal input is

u (t)= B 1l(t) + B 2 2 (t)

- 2 (3 1+2a 2T) +
T

6
3 (2 1 2 ')T

b. Nonlinear Systems

A single-input, multioutput nonlinear system is represented by

t

y(t) = h l (t; a) u(c-) d-
t

t
+ h2 ( ' 2 ) U(01) u(0-) do d- 2 + .... (21)

th 4
The m -order kernel h (t; a-1 , ..... , a ) can be written, in general, as

Sm(t; I f 2 . . -. ) = k (t; r 1 ) k 2 (t; a- 2 ). ..k (t; a- M) (22)

We assume, as we did for the linear systems, that all of the kernels are of the same

functional character. In a multi-input problem, we shall only require that the kernels

operating on the same component of the input be of the same functional character. Pro-

ceeding in the same manner as in the linear problem, we expand the kernels and the

input in terms of the characteristic orthonormal set

Li
jk

(23)k k(t; k) AJk ( k),

Sk 1

where the superscript i denotes the index corresponding to the component of the output.
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u(ak) = Bj(crk). (24)

Using (23) and (24) in (21) written at the terminal time t = T, we obtain

1 21 22

Aj= AJlB f+ A J21B AjZ2B + ... j = 1,2,... n. (25)
f=1 =1=

We have in Eq. 25 a set of simultaneous, nonlinear algebraic equations. It is not a simple

matter to solve (25) for Bp, but being a set of algebraic equations it is still much more

easily amenable than the corresponding nonlinear differential or integral equations. In

fact, closed-form solutions are possible for a large class of second- or third-order non-

linear systems, and numerical trial-and-error solution on a machine is relatively

straightforward.

The rest of the procedure is the same as for the linear systems, except for some

minor modifications arising in minimizing the cost functional, Eq. 7, such as the pos-

sibility of nonunique relations of the type Eq. 13. These modifications will not be dis-

cussed here.

EXAMPLE 2: Consider a nonlinear system given by

x 1 (t) = (t-o-) u(a-) dr- + (t-o-1 )(t-a"2 ) u(a"l) u(a-2 ) da-ldr 2

x2 (t) = -2 u(a-) dor + u(o-1 ) u(- 2 ) d- ldo-2 .

Suppose that we desire to find the input that brings the output to (1, -1) at t = 1, and min-

imizes

= 1 u(a) d(.

The characteristic orthonormal set is that of Example 1 with T = 1. Expanding all the

kernels and the input in terms of this set, and using these expansions in the equation at

t = 1, we have

B1  + B + B1 + B 2 ) = 1

2
-2B 1 + B 1 = -1.

Solving these equations for B 1 and B 2 , we obtain
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B 1 = 1, B2 = -1 + 4+ 1, .

Minimization of / = T

u (t) = 1 +

2
B2 gives the optimal input

1

(-1 + , 4 + 12 )(- t).

3. Constrained Input Problems

We shall now consider the same system that was considered above, except that the

input is constrained to be

lu(t) ll - K, (26

where the norm is defined as

u(t) P = , lui(t) I dt . (27
The discussion will be limited to a linear time-optimal problem only, that is,

The discussion will be limited to a linear time-optimal problem only, that is,

= 0
dt = T.

The system is again given by Eq. 5. We desire to bring the output vector to 9 in a min-

imum possible time with an input satisfying Eq. 26.

At the terminal time,

r T

i= l

(29)h.(T; cr) u.(c-) do-.
-1 1

Let us multiply both sides of (29) by a yet unspecified constant n-vector g =

(gl' gZ ... ' gn ) . Then,

r T

g, = 1
i= 1

< g, i(T; o-), ui(o-) do- (30)

(31)< g, >= < g, H(T; )> u(c) do-,

where
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S j=

n n

j=1 j= 1

If it is assumed that all of the functions appearing in (29) possess a norm of the type
given by (27), then

I<g, n> -<s T
0

(33)- Ilu( )llp 1I(g, H(T; a) I q

where

1 1
p q

From this, we have

Ilu(t) li >
P g,H(T; t Iq

Combining Eqs. 26 and 33, yields

I <gt>l
P I<g,H(T, t> Ilq

(34)

(35)

><g, >1
K (36)

(32)

For a given g, the norm Il<g,H(T; t) >I is a monotonically increasing function of T.
Therefore, the minimum of IIg, H(T; t)> q over T implies the minimum of T. In order

for I<g,L H(T;t)> lq to be the minimum in Eq. 36,

IIK, H(T; t)> II <gt
K

This is true if (35) holds with the equalities,

1<g,_ >1
K h= IIU(t)ll =

P I3(g, H(T; t)> q

Since (31) holds for arbitrary g, it must hold for g =g to satisfy

<g, '>= 1I

(37)

(38)

(39)
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and minimize I(g, (T; t)> I. Such a A does exist if all components of g, H(T;t))
5,6

vanish, at most, at some isolated points t., 0 < t. - T. Equation 38 holds if
1 1

/ n

u.(t) = C (t) sgn g h (T; t) (40)

j=l

where the coefficients C.(t) are determined from (38). The use of (40) in (38) yields

r T1/p

K = (t)lp = Ci(t) P dt . (41)

Noting that

q 1 q-1

pq-1' p q

we find

r q-1

C.(t) = q .h..(T; t) (42)

i= 1

Hence the time-optimal input is

r ^q-1 n

u (t) = q K .hi (T;t) sgn .h.(T;t) i 1, . r. (43)
1 g hij T; 1= . ...

i=l j=l

We still must determine the vector g. The technique of nonlinear programming may

be used to this end. For a large class of problems, g can easily be found by a direct

computation, as illustrated in Example 3.

If the input constraint is of the form

max Iui(t) l K (44)
i

that is, p - x0 and q - 1 in Eq. 27, Eq. 43 becomes

ui(t) = K sgn .h.(T; t) i = 1,2, ... ,r. (45)

j=1

EXAMPLE 3: Consider the same system as in Example 1. We desire that the output

of the system be brought to the origin in the minimum time by using an input whose mag-

nitude is constrained by Iu(t) I < 1. Direct use of (45) gives
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u*(t) = sgn [gl(T-2)+ 2]"

The vector g is determined as follows:

I + A
1 + g 2 2

1 2 =1 g1 =- +1

Minimizing the norm

2 

Tg .h(T; t) = doe

j=1 1

or

g h (T; t) = it+ 21 dt
j=1 1

directly, we obtain

S1 + (T2 2+3T12 )/
1 = - 1 + T +2 T2 2 + 3Ta 1a 2 + 3 1 /

2
S (T 2 2 +3Ta 1 )/2

g 2 = 22T a2 + 3Ta 1a 2 + 3(1

Here, the terminal time T is found from

2

j=1 1

The results in this report are the same as the known results derived by means of

maximum principle by using the corresponding differential equation description of the

systems. The possibility of extending the concepts of the last part of this report to non-

linear systems is now under investigation.

S. H. Kyong, E. P. Gyftopoulos
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