218 research outputs found

    Clinical investigation of an outbreak of alveolitis and asthma in a car engine manufacturing plant

    Get PDF
    Background Exposure to metal working fluid (MWF) has been associated with outbreaks of EAA in the US, with bacterial contamination of MWF being a possible cause, but was uncommon in the UK. Twelve workers developed extrinsic allergic alveolitis (EAA) in a car engine manufacturing plant in the UK, presenting clinically between December 2003 and May 2004. This paper reports the subsequent epidemiological investigation of the whole workforce. This had three aims:- • To measure the extent of the outbreak by identifying other workers who may have developed EAA or other work-related respiratory diseases. • To provide case-detection so that those affected can be treated. • To provide epidemiological data to identify the cause of the outbreak. Methods The outbreak was investigated in a three-phase cross-sectional survey of the workforce. Phase I A respiratory screening questionnaire was completed by 808/836 workers (96.7%) in May 2004. Phase II 481 employees with at least one respiratory symptom on screening and 50 asymptomatic controls were invited for investigation at the factory in June 2004. This included a questionnaire, spirometry and clinical opinion. 454/481(94.4%) responded along with 48/50(96%) controls. Workers were identified who needed further investigation and serial measurements of peak expiratory flow (PEF). Phase III 162 employees were seen at the Birmingham Occupational Lung Disease clinic. 198 employees returned PEF records, including 141 of the 162 who attended for clinical investigation. Case definitions for diagnoses were agreed. Results 87 workers (10.4% of workforce) met case definitions for occupational lung disease, comprising EAA(19), occupational asthma(74) and humidifier fever(7). 12 workers had more than one diagnosis. The peak onset of work-related breathlessness was Spring 2003. The proportion of workers affected was higher for those using metal working fluid (MWF) from a large sump(27.3%) compared with working all over the manufacturing area (7.9%) (OR=4.39,p<0.001). Two workers had positive specific provocation tests to the used but not the unused MWF solution. Conclusions Extensive investigation of the outbreak of EAA detected a large number of affected workers, not only with EAA but also occupational asthma. This is the largest reported outbreak in Europe. Mist from used MWF is the likely cause. In workplaces using MWF, there is a need to carry out risk assessments, to monitor and maintain fluid quality, to control mist and to carry out respiratory health surveillance

    HI in the Outskirts of Nearby Galaxies

    Full text link
    The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current Λ\rm \Lambda cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Modeling galactic halos with predominantly quintessential matter

    Get PDF
    This paper discusses a new model for galactic dark matter by combining an anisotropic pressure field corresponding to normal matter and a quintessence dark energy field having a characteristic parameter ωq\omega_q such that 1<ωq<13-1<\omega_q< -\frac{1}{3}. Stable stellar orbits together with an attractive gravity exist only if ωq\omega_q is extremely close to 13-\frac{1}{3}, a result consistent with the special case studied by Guzman et al. (2003). Less exceptional forms of quintessence dark energy do not yield the desired stable orbits and are therefore unsuitable for modeling dark matter.Comment: 12 pages, 1 figur

    Galactic rotation curves inspired by a noncommutative-geometry background

    Full text link
    This paper discusses the observed at rotation curves of galaxies in the context of noncommutative geometry. The energy density of such a geometry is diffused throughout a region due to the uncertainty encoded in the coordinate commutator. This intrinsic property appears to be sufficient for producing stable circular orbits, as well as attractive gravity, without the need for dark matter.Comment: 12 pages, 3 figures. Published in Gen.Rel.Grav. 44 (2012) 905-91

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure
    corecore