162 research outputs found

    A Conceptual Design of an Integrated Façade System to Reduce Embodied Energy in Residential Buildings

    Get PDF
    (1) The overall energy requirement of a building may be impacted by the building design, the selection of materials, the construction methods, and lifecycle management. To achieve an optimum energy-efficiency level when dealing with a new building or renovation project, it is important to improve the entire construction process as it is not enough to merely focus on the operational phase. If conventional construction practices do not evolve, compromise, or adapt to necessary changes, then it becomes challenging to deliver an ultimate low energy building. (2) This paper demonstrates the trend of off-site prefabrication and its production principles and the notions of open-building design and Design for X, as well as offering an overview of the development of automation in construction, which provides both insights and evaluations based on the context of the research. (3) Three European Union Horizon 2020 research projects were evaluated, and the outcome of the projects served as the backbone for the research and inspired the design of the proposed integrated façade system. Two design scenarios were proposed to demonstrate the potential improvements that could be achieved in a new build as well as in renovation projects. (4) The research lays a foundation for establishing a larger cross-disciplinary collaboration in the future.This research was funded by ZERO-PLUS, from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 678407. The authors would like to thank to following research projects: BERTIM received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 636984. HEPHAESTUS received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 732513

    Assessing eligibility for treatment in acute myeloid leukemia in 2023

    Get PDF
    Introduction: Age has historically been considered the main criterion to determine eligibility for intensive chemotherapy in patients with acute myeloid leukemia (AML), but age alone can no longer be considered an absolute indicator in determining which patients should be defined as unfit. Assessment of fitness for a given treatment today serves an important role in tailoring therapeutic options. Areas covered: This review examines the main options used in real-life to define eligibility for intensive and non-intensive chemotherapy in patients with AML, with a main focus on the Italian SIE/SIES/GITMO Consensus Criteria. Other published real-life experiences are also reviewed, analyzing the correlation between these criteria and short-term mortality, and thus expected outcomes. Expert opinion: Assessment of fitness is mandatory at diagnosis to tailor treatment to the greatest degree possible, evaluating the patient's individual profile. This is especially relevant when considering the availability of newer, less toxic therapeutic regimens, which have shown promising results in patients with AML who are older or considered unfit for intensive treatment. Fitness assessment is now a fundamental part of AML management and a critical step that can potentially influence outcomes and not just predict them

    Study of exclusive one-pion and one-eta production using hadron and dielectron channels in pp reactions at kinetic beam energies of 1.25 GeV and 2.2 GeV with HADES

    Get PDF
    We present measurements of exclusive ensuremathπ+,0 and η production in pp reactions at 1.25GeV and 2.2GeV beam kinetic energy in hadron and dielectron channels. In the case of π+ and π0 , high-statistics invariant-mass and angular distributions are obtained within the HADES acceptance as well as acceptance-corrected distributions, which are compared to a resonance model. The sensitivity of the data to the yield and production angular distribution of Δ (1232) and higher-lying baryon resonances is shown, and an improved parameterization is proposed. The extracted cross-sections are of special interest in the case of pp → pp η , since controversial data exist at 2.0GeV; we find \ensuremathσ=0.142±0.022 mb. Using the dielectron channels, the π0 and η Dalitz decay signals are reconstructed with yields fully consistent with the hadronic channels. The electron invariant masses and acceptance-corrected helicity angle distributions are found in good agreement with model predictions

    IMMU-01. TEM-GBM: AN OPEN-LABEL, PHASE I/IIA DOSE-ESCALATION STUDY EVALUATING THE SAFETY AND EFFICACY OF GENETICALLY MODIFIED TIE-2 EXPRESSING MONOCYTES TO DELIVER IFN-A WITHIN GLIOBLASTOMA TUMOR MICROENVIRONMENT

    Get PDF
    Abstract Temferon is a macrophage-based treatment relying on ex-vivo transduction of autologous HSPCs to express immune-payloads within the TME. Temferon targets the immune-modulatory molecule IFN-a, to a subset of tumor infiltrating macrophages known as Tie-2 expressing macrophages (TEMs) due to the Tie2 promoter and a post-transcriptional regulation layer represented by miRNA-126 target sequences. As of 31st May 2021, 15-patients received Temferon (D+0) with follow-up of 3 – 693 days. After conditioning neutrophil and platelet engraftment occurred at D+13 and D+13.5, respectively. Temferon-derived differentiated cells, as determined be the number of vector copy per genome, were found within 14 days post treatment and persisted albeit at lower levels up to 18-months. Very low concentrations of IFN-a in the plasma (8.7 pg/ml-D+30) and in the CSF (1.6 pg/ml-D+30) were detected, suggesting tight regulation of transgene expression. Five-deaths occurred at D+322, +340, +402, +478 and +646 due to PD, and one at D+60 due to complications following the conditioning regimen. Eight-patients had progressive disease (range: D-11 to +239) as expected for this tumor type. SAEs include GGT elevation (possibly related to Temferon) and infections, venous thromboembolism, brain abscess, hemiparesis, seizures, anemia and general physical condition deterioration, compatible with ASCT, concomitant medications and PD. Four-patients underwent 2ndsurgery. Recurrent tumors had gene-marked cells and increased expression of ISGs compared to first surgery, indicative of local IFNa release by TEMs. In one patient, a stable lesion had a higher proportion of T cells and TEMs within the myeloid infiltrate and an increased ISGs than in the progressing lesion, detected in the same patient. Tumor-associated clones expanded in the periphery. TME characterization by scRNA and TCR-sequencing is ongoing. To date, Temferon is well tolerated, with no DLTs identified. The results provide initial evidence of Temferon potential to activate the immune system of GBM patients, as predicted by preclinical studies

    Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-

    Get PDF
    In a sample of 471 million BB events collected with the BABAR detector at the PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is either e+e- or mu+mu-. We report results on partial branching fractions and isospin asymmetries in seven bins of di-lepton mass-squared. We further present CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi resonance. We find no evidence for CP or lepton-flavor violation. The partial branching fractions and isospin asymmetries are consistent with the Standard Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.

    Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons

    Get PDF
    We present improved measurements of CP-violation parameters in the decays B0→π+π−B^0 \to \pi^+ \pi^-, B0→K+π−B^0 \to K^+ \pi^-, and B0→π0π0B^0 \to \pi^0 \pi^0, and of the branching fractions for B0→π0π0B^0 \to \pi^0 \pi^0 and B0→K0π0B^0 \to K^0 \pi^0. The results are obtained with the full data set collected at the ΄(4S)\Upsilon(4S) resonance by the BABAR experiment at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory, corresponding to 467±5467 \pm 5 million BBˉB\bar B pairs. We find the CP-violation parameter values and branching fractions Sπ+π−=−0.68±0.10±0.03,Cπ+π−=−0.25±0.08±0.02,AK−π+=−0.107±0.016−0.004+0.006,Cπ0π0=−0.43±0.26±0.05,Br(B0→π0π0)=(1.83±0.21±0.13)×10−6,Br(B0→K0π0)=(10.1±0.6±0.4)×10−6, S_{\pi^+\pi^-} = -0.68 \pm 0.10 \pm 0.03, C_{\pi^+\pi^-} = -0.25 \pm 0.08 \pm 0.02, A_{K^-\pi^+} = -0.107 \pm 0.016 ^{+0.006}_{-0.004}, C_{\pi^0\pi^0} = -0.43 \pm 0.26 \pm 0.05, Br(B^0 \to \pi^0 \pi^0) = (1.83 \pm 0.21 \pm 0.13) \times 10^{-6}, Br(B^0 \to K^0 \pi^0) = (10.1 \pm 0.6 \pm 0.4) \times 10^{-6}, where in each case, the first uncertainties are statistical and the second are systematic. We observe CP violation with a significance of 6.7 standard deviations for B0→π+π−B^0 \to\pi^+\pi^- and 6.1 standard deviations for B0→K+π−B^0 \to K^+ \pi^-, including systematic uncertainties. Constraints on the Unitarity Triangle angle α\alpha are determined from the isospin relations among the B→ππB \to \pi\pi rates and asymmetries. Considering only the solution preferred by the Standard Model, we find α\alpha to be in the range [71∘,109∘][71^\circ,109^\circ] at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.

    Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

    Get PDF
    Abstract. The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay halflife. The methodology of the experimental campaign presently running at INFN - Laboratori Nazionali del Sud is reported and the experimental challenges characterizing such activity are describe

    NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay

    Get PDF
    Neutrinoless double beta decay (0ÎœÎČÎČ) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research “beyond Standard Model” and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0ÎœÎČÎČ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract information on the 0ÎœÎČÎČ Nuclear Matrix Elements. In DCE reactions and ÎČÎČ decay indeed the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on ÎČÎČ matrix elements. In a wider view, the NUMEN international collaboration plans a major upgrade of the INFN-LNS facilities in the next years in order to increase the experimental production of nuclei of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest as candidates for 0ÎœÎČÎČ
    • 

    corecore