14 research outputs found

    Functional characterization of a novel truncating mutation in Lamin A/C gene in a family with a severe cardiomyopathy with conduction defects

    Get PDF
    Background/Aims: Truncating LMNA gene mutations occur in many inherited cardiomyopathy cases, but the molecular mechanisms involved in the disease they cause have not yet been systematically investigated. Here, we studied a novel frameshift LMNA variant (p.D243Gfs*4) identified in three members of an Italian family co-segregating with a severe form of cardiomyopathy with conduction defects. Methods: HEK293 cells and HL-1 cardiomyocytes were transiently transfected with either Lamin A or D243Gfs*4 tagged with GFP (or mCherry). D243Gfs*4 expression, cellular localization and its effects on diverse cellular mechanisms were evaluated with western blotting, laser-scanning confocal microscopy and video-imaging analysis in single cells. Results: When expressed in HEK293 cells, GFP- (or mCherry)-tagged LMNA D243Gfs*4 colocalized with calnexin within the ER. ER mislocalization of LMNA D243Gfs*4 did not significantly induce ER stress response, abnormal Ca2+ handling and apoptosis when compared with HEK293 cells expressing another truncated mutant of LMNA (R321X) which similarly accumulates within the ER. Of note, HEK293-LMNA D243Gfs*4 cells showed a significant reduction of connexin 43 (CX43) expression level, which was completely rescued by activation of the WNT/ÎČ-catenin signaling pathway. When expressed in HL-1 cardiomyocytes, D243Gfs*4 significantly impaired the spontaneous Ca2+ oscillations recorded in these cells as result of propagation of the depolarizing waves through the gap junctions between non-transfected cells surrounding a cell harboring the mutation. Furthermore, mCh-D243Gfs*4 HL-1 cardiomyocytes showed reduced CX43-dependent Lucifer Yellow (LY) loading and propagation. Of note, activation of ÎČ-catenin rescued both LY loading and LMNA D243Gfs*4 -HL-1 cells spontaneous activity propagation. Conclusion: Overall, the present results clearly indicate the involvement of the aberrant CX43 expression/activity as a pathogenic mechanism for the conduction defects associated to this LMNA truncating alteration

    Exon-trapping assay improves clinical interpretation of COL11A1 and COL11A2 intronic variants in stickler syndrome type 2 and otospondylomegaepiphyseal dysplasia

    Get PDF
    Stickler syndrome (SS) is a hereditary connective tissue disorder affecting bones, eyes, and hearing. Type 2 SS and the SS variant otospondylomegaepiphyseal dysplasia (OSMED) are caused by deleterious variants in COL11A1 and COL11A2, respectively. In both genes, available database information indicates a high rate of potentially deleterious intronic variants, but published evidence of their biological effect is usually insufficient for a definite clinical interpretation. We report our previously unpublished intronic variants in COL11A1 (c.2241 + 5G>T, c.2809 − 2A>G, c.3168 + 5G>C) and COL11A2 (c.4392 + 1G>A) identified in type 2 SS/OSMED individuals. The pathogenic effect of these variants was first predicted in silico and then investigated by an exon-trapping assay. We demonstrated that all variants can induce exon in-frame deletions, which lead to the synthesis of shorter collagen XI α1 or 2 chains. Lacking residues are located in the α-triple helical region, which has a crucial role in regulating collagen fibrillogenesis. In conclusion, this study suggests that these alternative COL11A1 and COL11A2 transcripts might result in aberrant triple helix collagen. Our approach may help to improve the diagnostic molecular pathway of COL11-related disorder

    A Three Year Study on 14 VOCs at One Site in Rome: Levels, Seasonal Variations, Indoor/Outdoor Ratio and Temporal Trends

    Get PDF
    Fourteen volatile organic compounds (VOCs)—twelve hydrocarbons and two organochlorine compounds—were monitored both outdoors and indoors for three years at one site in Rome. Results showed that 118 out of 168 indoor seasonal mean values were higher than the corresponding outdoor concentrations. The most relevant source of outdoor hydrocarbons was automotive exhaust emissions. Due to the enforcement of various measures to protect health and the environment, outdoor levels of monoaromatic hydrocarbons decreased about ten fold over 15 years, and aliphatic hydrocarbons also decreased. With the decrease in these outdoor concentrations, indoor air sources are likely to be more relevant for indoor air exposures. Winter outdoor values for monoaromatic hydrocarbons were generally markedly higher than the summer ones. The gradual replacement of the current fleet of circulating cars with new cars complying with EURO 5 standards, further reducing hydrocarbon emissions, may possibly lead to an increase in the observed indoor/outdoor ratios. It is indeed more difficult to remove indoor sources, some of which are still unknown

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    Exploring relationships between joint hypermobility and neurodevelopment in children (4–13 years) with hereditary connective tissue disorders and developmental coordination disorder

    No full text
    Joint hypermobility (JH) is a common, though largely ignored physical trait with increasing clinical reverberations. A few papers suggest a link between JH and selected neurodevelopmental disorders, such as developmental coordination disorder (DCD). JH is also the hallmark of various hereditary connective tissue disorders (HCTDs). Children with HCTDs may present abnormal neurodevelopment but its manifestations remain undetermined. This study examined 23 children (group 1), aged 4-13 years, with different HCTDs (i.e., 19 with hypermobile Ehlers-Danlos syndrome (EDS)/hypermobility spectrum disorder, 3 with molecularly confirmed classical EDS, and 1 with Loeys-Dietz syndrome type 1 due to TGFBR2 mutation) and 23, age- and sex-matched children with DCD (group 2). All underwent 14 different psychometric tests exploring motor, cognitive, executive-attentive, and emotional-behavior features. In group 1, 30%, 22%, and 13% patients presented DCD (with or without dysgraphia), learning disabilities, and attention deficit-hyperactivity disorder, respectively. None had cognitive delay. In group 2, 17% patients presented generalized JH and none had HCTDs. DCD children presented more motor and coordination troubles than HCTDs patients, while quality of life of children with HCTDs resulted more deteriorated due to somatic manifestations and behavioral traits. This study presents the full overview of neurodevelopmental attributes in HCTDs, and compares with standardized tools the neurodevelopmental profile of children with DCD and HCTDs. While the high rate of neurodevelopmental comorbidities in HCTDs deserves attention, the impact of a dysfunctional connective tissue in children with a primary diagnosis of DCD needs more research

    Electroclinical features of MEF2C haploinsufficiency-related epilepsy: A multicenter European study

    No full text
    Purpose: Epilepsy is a main manifestation in the autosomal dominant mental retardation syndrome caused by heterozygous variants in MEF2C. We aimed to delineate the electro-clinical features and refine the genotype phenotype correlations in patients with MEF2C haploinsufficiency. Methods: We thoroughly investigated 25 patients with genetically confirmed MEF2C-syndrome across 12 different European Genetics and Epilepsy Centers, focusing on the epileptic phenotype. Clinical features (seizure types, onset, evolution, and response to therapy), EEG recordings during waking/sleep, and neuroimaging findings were analyzed. We also performed a detailed literature review using the terms "MEF2C", "seizures", and "epilepsy". Results: Epilepsy was diagnosed in 19 out of 25 (-80%) subjects, with age at onset <30 months. Ten individuals (40%) presented with febrile seizures and myoclonic seizures occurred in-50% of patients. Epileptiform abnormalities were observed in 20/25 patients (80%) and hypoplasia/partial agenesis of the corpus callosum was detected in 12/25 patients (-50%). Nine patients harbored a 5q14.3 deletion encompassing MEF2C and at least one other gene. In 7 out of 10 patients with myoclonic seizures, MIR9-2 and LINC00461 were also deleted, whereas ADGRV1 was involved in 3/4 patients with spasms. Conclusion: The epileptic phenotype of MEF2C-syndrome is variable. Febrile and myoclonic seizures are the most frequent, usually associated with a slowing of the background activity and irregular diffuse discharges of frontally dominant, symmetric or asymmetric, slow theta waves with interposed spike-and-waves complexes. The haploinsufficiency of ADGRV1, MIR9-2, and LINC00461 likely contributes to myoclonic seizures and spasms in patients with MEF2C syndrome
    corecore