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Abstract: Stickler syndrome (SS) is a hereditary connective tissue disorder affecting bones, eyes,
and hearing. Type 2 SS and the SS variant otospondylomegaepiphyseal dysplasia (OSMED) are
caused by deleterious variants in COL11A1 and COL11A2, respectively. In both genes, available
database information indicates a high rate of potentially deleterious intronic variants, but published
evidence of their biological effect is usually insufficient for a definite clinical interpretation. We report
four previously unpublished intronic variants in COL11A1 (c.2241 + 5G>T, c.2809 − 2A>G, c.3168 +

5G>C) and COL11A2 (c.4392 + 1G>A) identified in type 2 SS/OSMED individuals. The pathogenic
effect of these variants was first predicted in silico and then investigated by an exon-trapping assay.
We demonstrated that all variants can induce exon in-frame deletions, which lead to the synthesis
of shorter collagen XI α1 or 2 chains. Lacking residues are located in the α-triple helical region,
which has a crucial role in regulating collagen fibrillogenesis. In conclusion, this study suggests that
these alternative COL11A1 and COL11A2 transcripts might result in aberrant triple helix collagen.
Our approach may help to improve the diagnostic molecular pathway of COL11-related disorders.

Keywords: COL11A1; COL11A2; stickler syndrome

1. Introduction

Stickler syndrome (SS) is a hereditary connective tissue disorder affecting hearing, vision,
and the musculoskeletal system, and has an estimated incidence of 1:7500 to 10,000 births [1–4].
Its clinical presentation is variable and mainly includes early onset, severe myopia, vitreous
changes, retinal detachment, high-frequency neurosensorial hearing loss, midfacial underdevelopment,
palatal cleft with or without Pierre Robin sequence, mild spondylo-epiphyseal dysplasia primarily
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affecting the femoral heads, premature osteoarthritis, and joint hypermobility [5,6]. Clinical variability
mirrors marked genetic heterogeneity.

Type 1 SS (MIM #108300), representing the 80–90% of the cases, is characterized by membranous
vitreous changes and is caused by heterozygous variants in COL2A1 encoding type II collagen [7].
Type 2 SS (MIM #604841) affects the remaining 10–20% cases and is associated with monoallelic variants
in COL11A1 [8], which codes the alpha (α) 1 chain of type XI collagen. The beaded vitreous phenotype
classically distinguishes SS type 2 from SS type 1 [1,8,9]. A non-ocular phenotype resembling SS
has been also described in association with heterozygous or biallelic variants in COL11A2, encoding
collagen XI α2 chains. This condition, currently named otospondylomegaepyphyseal dysplasia
(OSMED), was formerly labeled as type 3 SS, or non-ocular SS [10,11]. More rarely, autosomal recessive
forms of SS have been described in association with biallelic variants in COL9A1, COL9A2, COL9A3,
LOXL3, and, more recently, PLOD3 [12–17]. A single patient with ocular features suggestive of SS and
additional findings has been described with biallelic variants in LRP2 [18].

The COL11A1 and COL11A2 human genes code for the α1 and α2 chains of (pro)collagen
and mature heterotrimer collagen of type XI, which is an extracellular minor fibrillar collagen.
Both (pro)collagen XI α1 and α2 are present in the inner ear, hyaline cartilage, and nucleus pulposus of
the intervertebral disks [19,20]. Collagen XI α1 and α2 chains play an important role in fibrillogenesis by
interacting with other components of the extracellular matrix, a fact demonstrating the pleiotropic nature
of type 2 SS and OSMED [19]. At the variance with the collagen XI α1 chain, the collagen XI α2 chain
is not expressed in the vitreous, and this explains the absence of significant eye changes in individuals
with deleterious COL11A2 variants. Usually, nonsense, frameshift, and missense heterozygous variants
in COL11A1 and COL11A2 are considered deleterious due to their direct effect on collagen synthesis,
secretion, fibril assembly, or turnover [21]. Similarly, intronic variants affecting the mRNA splicing
machinery might exert their pathogenic effect on transcription, messenger RNA (mRNA) processing,
and translation [22]. This phenomenon is presumably not uncommon in COL11A1 and COL11A2,
as at least 49 and 12 intronic variants potentially affecting the splicing have been reported in the
COL11A1 (https://databases.lovd.nl/shared/variants/COL11A1, Leiden Open Variation Database) and
COL11A2 (https://databases.lovd.nl/shared/genes/COL11A2) variant databases, respectively. However,
the presumed translational effect of these nucleotide changes is rarely investigated, with a corresponding
lack of information and clinical interpretation. Here, we report four unpublished COL11A1 and
COL11A2 splice site variants in four COL11-pathy families. An exon-trapping assay was used to verify
the in silico predictions on splicing machinery.

2. Materials and Methods

2.1. Patients’ Enrollment

Subjects were enrolled after obtaining written informed consent for publishing pictures and
clinical and molecular data. This study was performed in accordance with the 1984 Helsinki declaration
and subsequent versions. All samples were obtained and all evaluations were performed as part of
standard clinical diagnostic activities of the involved institution, including the exon-trapping assay.
Hence, institutional review board (IRB) approval was not requested.

2.2. Sample Preparation and Next-Generation Sequencing Analysis

Genomic DNA was extracted from the individual’s peripheral blood leucocytes by using a
Bio Robot EZ1 (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. DNA was
quantified with a Qubit spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Probands’
DNA first underwent sequencing with a SureSelect gene panel (Agilent Technologies, Boulder, CO, USA)
designed to selectively capture known genes associated with the various subtypes of SS, including
COL11A1 (HUGO Gene nomenclature committee, HGNC: 2186, NM_001854), COL11A2 (HGNC: 2187,
NM_080680), COL2A1 (HGNC: 2200, NM_001844), COL9A1 (HGNC: 2217, NM_001851), COL9A2 (HGNC:
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2218, NM_001852), COL9A3 (HGNC: 2219, NM_001853), LOXL3 (HGNC: 13869, NM_032603),
LRP2 (HGNC: 6694, NM_004525), and PLOD3 (HGNC: 9083, NM_001084), according to the current
nosology. Libraries were prepared using the SureSelect target enrichment kit (Agilent Technologies,
Boulder, CO, USA) following the manufacturer’s instructions. Targeted fragments were then sequenced
on a MiSeq/NextSeq 500 sequencer (Illumina, San Diego, CA, USA) using a MiSeq Reagent kit V3
or NextSeq 500 mid-output kit V2.5 (300-cycle flow cell). Reads were aligned to the GRCh37/hg19
reference genome by Burrows-Wheeler Aligner (BWA) (v.0.7.17). BAM files were sorted by SAMtools
(v.1.7) and purged from duplicates using Mark Duplicates from the Picard suite (v.2.9.0). Mapped reads
were locally realigned using GATK 3.8. Reads with mapping quality scores lower than 20 or with more
than one-half nucleotides with quality scores less than 30 were filtered out. The GATK’s Haplotype
Caller tool was used to identify variants. Variants were functionally annotated by implementing
the ANNOVAR program on the NCBI RefSeq transcript reference system, with information about
allelic frequency (1000 Genomes, dbSNP v151, GO-ESP 6500, ExAC, TOPMED, gnomAD, NCI60,
COSMIC), reported or computationally estimated pathogenicity (Varsome, ClinVar, HGMD, LOVD,
or SIFT, Polyphen2, LRT, MutationTaster, MutationAssessor, FATHMM, PROVEAN, VEST3, MetaSVM,
MetaLR, M-CAP, CADD, DANN, fathmm-MKL, Eigen, GenoCanyon), and genomic site conservation
(fitCons, GERP++, phyloP100way, phyloP20way, phastCons100way vertebrate, phastCons20way
mammalian, SiPhy 29way). Selected variants were interpreted according to the American College of
Medical Genetics and Genomics/Association for Molecular Pathology (ACMGG/AMP) [23].

Variants sorted as “benign” and “likely benign” were excluded. Remaining variants were
classified, based on the American College of Medical Genetics (ACMG) standards and guidelines for
the interpretation of sequence variants, as pathogenic, likely pathogenic, or of uncertain significance
by using the following prioritization criteria: (i) null variant (nonsense, frameshift, deletion, insertion,
canonical ±1 or ±2 splice site) in genes previously described as disease-causing by haploinsufficiency
or loss of function; (ii) variant located in a mutational hot spot and/or critical and well-established
functional domain; (iii) variant absent in allele frequency population databases; (iv) variant reported in
allele frequency population databases, but with a minor allele frequency (MAF) significantly lower
than expected for the disease; (v) variant annotated as pathogenic in ClinVar and/or LOVD; (vi) variant
co-segregation with disease in multiple affected family members; (vii) well-established in vitro or
in vivo functional studies supportive of a damaging effect on the gene or gene product. Common
(MAF > 0.01) and synonymous variants were discarded.

2.3. Sanger Sequencing

COL11A1 (HUGO Gene Nomenclature Committee, HGNC ID: 2186) and COL11A2 (HGNC ID:
2187) variants identified by next-generation sequencing (NGS) were confirmed by Sanger sequencing
and resequenced in independent experiments. Primer sequences are reported in supplementary Table
S1. The amplified products were subsequently purified by using the ExoSAP-IT PCR Product Cleanup
Reagent (Thermo Fisher Scientific, Waltham, MA, USA) and sequenced by using the BigDye Terminator
v1.1 sequencing kit (Thermo Fisher Scientific, Waltham, MA, USA), purified using DyeEx plates
(Qiagen, Hilden, Germany), and resolved on an ABI Prism 3130 Genetic Analyzer (Thermo Fisher
Scientific, Waltham, MA, USA). Sequences were analyzed using the Sequencer software (Gene Codes,
Ann Arbor, MI, USA). In individuals with positive family history, segregation from the affected parent
was carried out by Sanger sequencing. In apparently de novo, naturally conceived cases, paternity was
tested by microsatellite analysis.

2.4. In Silico Variant Analysis

Splice-site variants were classified on the basis of in silico splice predictors, including NetGene2
(http://www.cbs.dtu.dk/services/NetGene2/), Berkeley Drosophila Genome Project (BDGP, http://www.
fruitfly.org/seq_tools/splice.html), and Human Splicing Finder (HSF, http://www.umd.be/HSF3/).
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2.5. Variant Designation

Nucleotide variant nomenclature follows the format indicated in the Human Genome Variation
Society (HGVS, http://varnomen.hgvs.org/) recommendations. The DNA variant numbering system
refers to cDNA. Nucleotide numbering uses +1 as the A of the ATG translation initiation codon in the
reference sequence, with the initiation codon as codon 1.

2.6. Minigene Assay

The in vitro splicing assay was carried out using a pSPL3 exon-trapping vector provided by
Tompson and Young [24]. Briefly, the pSPL3 vector contains a small artificial gene composed of an
SV40 promoter, an exon A–intron–exon B sequence with functional splice donor and acceptor sites,
and a late polyadenylation signal. For COL11A1 c.2241 + 5G>T, wild-type and mutant COL11A1 exon
26 was directly PCR amplified from Individual #1 with specific primers containing additional XhoI
(forward) and BamHI (reverse) restriction sites. The PCR reaction amplified the entire exon 26 sequence
plus an additional 312 bp (5′) and 466 bp (3′) of the flanking intronic regions. For COL11A1 c.2809 −
2A>G, a DNA fragment of 750 bp, including the COL11A1 exon 37, 336 bp (5′), and 360 bp (3′) of the
flanking intronic regions, was amplified from Individual #2 with specific primers. For COL11A1 c.3168
+ 5G>C, an 820 bp genomic DNA fragment that comprises COL11A1 exon 41 and its flanking sequences
(including exon 40, intron 40, and parts of introns 39 and 41) was amplified by PCR with primers
containing the appropriate restriction enzyme sites from Individual #3′s DNA. For COL11A2 c.4392
+ 1G>A, the wild-type and mutant COL11A2 region including both the exon 60 and corresponding
flanking sequences (including exon 59, intron 59, and parts of introns 58 and 60) was directly PCR
amplified from Individual #4 with specific primers. In the last two vectors, we cloned two exons
because the intron (introns 40 or 59, respectively) included among these is short. All primer sequences
are listed in Table S1.

After PCR amplification, PCR products were purified and subjected to restriction enzyme digestion,
and were then inserted into pSPL3 exon-trapping vector. All minigene constructs were then Sanger
sequenced to verify the correctness of the wild-type and mutant DNA fragments. Vectors containing
either wild-type or variant sequences or no insert (empty vector) were transfected into HEK 293T cells in
triplicate using Lipofectamine® LTX (Thermo Fisher Scientific, USA), according to the manufacturer’s
instructions. Total RNA was harvested 48 h post-transfection using an RNeasy Mini Kit (Qiagen,
Hilden, Germany), treated with RNase-DNase free (Qiagen, Hilden, Germany), quantified by Nanodrop
(Thermo Fisher Scientific, Waltham, MA, USA), and reverse-transcribed using a QuantiTect Reverse
Transcription Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. The cDNA
was PCR amplified using vector-specific primers (V1-forward and V1-reverse). The primers used for
cDNA amplification are given in Table S1. The amplified fragments were visualized on a 1% agarose
gel and subsequently Sanger sequenced.

3. Results

3.1. Individual #1: Clinical Report

Individual #1 was a 27-year-old Italian woman referred to Medical Genetics consultation for
myopia and musculoskeletal pain, as well as an original suspicion of Ehlers–Danlos syndrome, by a
secondary center physician. She was the second child of a father with moderate myopia, who died at
55 years due to cerebral neoplasia, and a mother affected by hydroadenitis suppurativa and lichen
planus pilaris. This individual had an older sister with mild myopia. Since the age of six years,
she presented myopia, which was of −13.0 diopters on the left eye and −12.0 diopters on the right eye
at the time of examination. There was not any evidence of vitreous degeneration. She also reported
recurrent knee dislocations and chronic pain in the shoulders since adolescence. Due to chronic
back pain, lumbar spondylolisthesis was noted. At 24 years of age, audiometry revealed moderate,
bilateral neurosensorial hearing loss predominantly involving high frequencies and, at 26 years, a heart
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ultrasound disclosed mild mitral valve prolapse. Physical examination showed a flattened malar region,
hypoplastic nasal bridge, and bilateral epicanthus. The anthropometry and pattern of joint mobility
were within normal range. Brachydactyly type D was also evident on the left hand. Individual #1 was
the mother of a four-year-old boy with myopia (−3.0 diopters on the left eye and −4.0 diopters on the
right eye), mild bilateral neurosensorial hearing loss, mild hypoplasia of the malar region, hypertrophic
upper labial frenulum, and mild diastasis of the upper incisors. Palate, stature, and psychomotor
development were normal.

Individual #1: Molecular Findings

NGS analysis performed on DNA from individual #1 identified the heterozygous c.2241 + 5G>T
variant located in the intron 26 of COL11A1 gene (Table 1). No other potential candidate variants were
detected in the remaining genes. The c.2241 + 5G>T variant was absent from all applied population
and disease-specific databases, suggesting that it is novel. The result was confirmed by direct Sanger
sequencing of individual #1 DNA (Figure 1a). The variant was also detected in her affected son’s
DNA. To evaluate the pathogenicity of this variant, we used several in silico splice-site prediction
programs, such as NetGEne2, NNSPLICE, and Human Splice Finder3. These analyses predicted that
the nucleotidic change weakened the donor spliced site (Figure 1b). To validate these predictions,
we employed a minigene-based splice assay. The minigenes that carried the wild-type sequence and
c.2241 + 5G>T variant were transfected into HEK293 cell line. The reverse transcriptase (RT)-PCR
analysis performed on total RNA extracted from the transfected cells detected a 302 bp band in cells
that were transfected with the wild-type region and a 257 bp band in both cells transfected with the
empty vector and the mutant plasmid (Figure 1c). Direct sequencing of the RT-PCR products revealed
that the larger fragment contained the exon 26, as expected. In contrast, the shorter fragment lacked
the exon 26 (Figure 1d). The exon 26 skipping may lead to the synthesis of a shorter collagen XI α1
chain defective of the 15 residues (733–747) of the α1 helical region. The variant has been submitted to
LOVD (https://databases.lovd.nl/shared/variants/0000687717#00023834, individual ID # 00311014).

Table 1. Characteristics of COL11A1 and COL11A2 variants identified in this study. Abbreviations are
as follows: chr: chromosome; NA: not available; VUS: variant uncertain significance; PM2: variant
not found in gnomAD exomes or genomes; PVS1: null variant; PP5: ClinVar classifies this variant
as “Likely Pathogenic” or “Pathogenic”, rated one star, criteria provided, single submitter, with one
submission; M: moderate; VS: very strong; S: supporting.

Individual 1 2 3 4

Gene COL11A1
(HGNC: 2186)

COL11A1
(HGNC: 2186)

COL11A1
(HGNC: 2186)

COL11A2
(HGNC: 2187)

Variant
c.2241+5G>T

chr1:
g.103462631G>T

c.2809-2A>G
chr1:

g.103435830A>G

c.3168+5G>C
chr1:

g.103427417G>C

c.4392+1G>A
chr6:

g.33134289G>A

Intron number 26 36 41 60

rs-ID (dbSNP) NA NA NA rs750995470

Parental origin NA De novo De novo Mother

LOVD-ID 00311014 00311022 00311016 00311018

Frequency

gnomAD-Total

Allele count NA NA NA 3

Allele number NA NA NA 249.798

No. of
homozygotes NA NA NA 0

https://databases.lovd.nl/shared/variants/0000687717#00023834
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Table 1. Cont.

Individual 1 2 3 4

Allele freq. NA NA NA 0.000012

Varsome

Verdict VUS Pathogenic VUS Pathogenic

Rules PM2 PVS1 PM2 PP5 PM2 PVS1 PM2 PP5

Strength M VS M S M VS M M
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Figure 1. Molecular findings of individual #1. (a) Electropherogram showing DNA sequencing analysis
of the PCR product amplified with primers targeting exon 26 and flanking intronic regions of COL11A1.
Nucleotide sequences are provided. (b) Splicing prediction of the scores of the intronic variant indicate
the potential alteration of the splicing process. SAS: splice acceptor site; SDS: splice donor site; NA: not
available; WT: wild type; MUT: mutated. (c) Analysis of the c.2241 + 5G>T variant using the minigene
construct. The position of the variant site and fragment containing exon 26 and its adjacent introns are
indicated. Analysis of mRNA from transfected HEK293 cells via reverse transcriptase (RT)-PCR (on the
gel, C: empty vector; WT: wild type; MUT: mutated) and (d) direct sequencing.



Genes 2020, 11, 1513 7 of 15

3.2. Individual #2: Clinical Report

Individual #2 was the naturally conceived first daughter of non-consanguineous parents with
negative family history. Prenatally, second trimester high-resolution ultrasound scan revealed
polyhydramnios, biparietal diameter and abdominal circumference >95th percentile, length of long
bones at the lower end (5th–10th centile), orbital hypertelorism, and suspected craniosynostosis.
She was born at term by elective Caesarean delivery because of fetal–maternal disproportion.
Her weight was 3925 g (>97th percentile), length 48.3 cm (25–50th percentile), and head circumference
37.5 cm (>97th percentile) with a wide anterior fontanelle. A flattened and underdeveloped midface,
apparent exophthalmos, small nose with depressed nasal bridge, median submucous cleft palate,
and micrognathia were also noticed. At birth, the echocardiogram and cerebral and abdominal
ultrasound were unremarkable, except for patent foramen ovale. A brain magnetic resonance imaging
(MRI) showed small focal bilateral cerebellar deep white matter heterotopia, enlarged and dysmorphic
ventricular system, and apparently absent left olfactory bulb.

In the following months, ophthalmologic evaluation confirmed exophthalmos and also noted
right eye strabismus, horizontal nystagmus, and myopic chorioretinopathy. Cycloplegic refraction
disclosed severe myopia with −14.00 sf and −4.00 cyl 40◦ degree in the right eye, and −14.50 sf −3.50 cyl
70◦ degree in the left eye. Visually evoked potentials and an electroretinogram performed at six
months of age showed residual visual capacity and retinal function. A neonatal otoacoustic emission
screening test failed on the right. At four months of age, acoustic-evoked potentials demonstrated mild
conductive hearing loss. She stood alone at nine months, walked unsupported at 18 months, and said
her first words at 12 months, but her language was poor at 22 months (last examination). The patient
was introduced early into a child neurology program due to mild developmental delay.

Individual #2: Molecular Findings

The targeted NGS platform revealed that individual #2 carried out an unpublished splice site
c.2809 − 2A>G variant located in intron 36 of COL11A1 (Table 1 and Figure 2a). This variant was
previously described as “likely pathogenic” in ClinVar in a patient with SS (https://www.ncbi.nlm.
nih.gov/clinvar/variation/845674/). No other candidate variants were found in the remaining genes.
The result was confirmed by direct Sanger sequencing of the patient’s DNA. The variant was not
detected in the patient’s parents and, therefore, was assumed to be de novo (Figure 2a). According
to algorithms developed to predict the effect of sequence changes on RNA splicing, the variant is
expected to disrupt the intron 36 splice acceptor site (Figure 2b). That loss would likely mediate exon
skipping or the use of an alternative cryptic splice site nearby. To characterize the impact of the c.2809
− 2A>G variant on RNA splicing, we cloned the wild-type and mutant sequence of COL11A1 exon 37
and flanking introns in the pSPL3 vector and transfected them into the HEK293 cell line. Analysis of
the splicing products from the minigene assay revealed that cells transfected with the wild-type vector
yielded the expected 311 bp band containing the exon 37 (Figure 2c). In contrast, cells transfected with
the mutant vector yielded a band at 257 bp lacking the exon 37. Sequencing of all bands confirmed
break points and splicing events (Figure 2d). The deletion of exon 37 was predicted to generate a shorter
collagen XI α1 chain that lacks 18 residues (937–954) located in the α1 helical region. The variant has
been submitted to LOVD (https://databases.lovd.nl/shared/variants/0000687726#00023834, individual
ID #00311022).

https://www.ncbi.nlm.nih.gov/clinvar/variation/845674/
https://www.ncbi.nlm.nih.gov/clinvar/variation/845674/
https://databases.lovd.nl/shared/variants/0000687726#00023834
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Figure 2. Molecular findings of individual #2. (a) Electropherogram of COL11A1 exon 37 and flanking
intron sequence showing the heterozygous c.2809 − 2A>G variant. Nucleotide sequences are provided.
(b) Prediction of the scores of splice acceptor sites of COL11A1 exon 37 of the wild-type and mutated
genomic bases. (c) Analysis of the c.2809 − 2A>G variant using the minigene construct. The positions
of the variant site and fragment containing exon 37 and its adjacent introns are indicated. Analysis of
mRNA from transfected HEK293 cells via RT-PCR (on the gel, C: empty vector; WT: wild type; MUT:
mutated) and (d) direct sequencing.
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3.3. Individual #3: Clinical Report

Individual #3 was a naturally conceived newborn from an uneventful pregnancy and at-term
vaginal delivery with an Apgar score of 81/95, length of 46 cm (2nd percentile), head circumference
of 33 cm (15th percentile), and weight of 2620 g (9th percentile). Soon after birth, she developed
respiratory distress due to upper airway obstruction, which required admission to the neonatal
intensive care unit. Here, the Pierre Robin sequence was diagnosed for the combination of micrognathia,
glossoptosis, and cleft soft palate. This requested early mandibular distraction. Aspecific brain lesions
attributed to the respiratory distress were detected with transfontanellar ultrasound at birth and
subsequently confirmed by brain MRI, which also showed hypoplasia of the corpus callosum and
buphthalmus. In addition, neonatal physical examination revealed a broad forehead with frontal
bossing, ocular proptosis with bilateral buphthalmos and megalocornea (diameter 13 mm), blue sclerae,
midface hypoplasia, and hypoplastic nose with anteverted nostrils. Total body radiographs at
birth showed reduced ischiatic notch, precocious ossification of the proximal femoral epiphyses,
broad metaphyses, especially of the lower limbs (Figure 3a), short phalanges, frontal bossing with an
enlarged anterior fontanel, micrognathia, and mild platyspondyly. Auditory brainstem response test
was negative, but audiological examination disclosed recurrent otitis media and conductive hearing
loss. At the last examination at one year of age, psychomotor development was normal.

Individual #3: Molecular Findings

NGS analysis detected the c.3168 + 5G>C variant in the intron 41 of COL11A1 (Table 1). No other
candidate variants were found in the remaining genes. Sanger sequencing confirmed the variant
in the patient (Figure 3b) and documented that it was absent in both parents. The c.3168 + 5G>C
variant was not reported in major databases and, therefore, is novel, and is expected to disrupt
the intron 41 splice donor site (Figure 3c). The effect of the splice variant at the mRNA level was
evaluated by using the minigene assay. PCR amplification and Sanger sequencing of wild-type and
mutant cDNA revealed two products of different sizes, which is the result of exon 41 skipping in
the mutated sequence (347 bp) compared to the wild-type control (401 bp) due to disruption of
the intron 41 splice donor site (Figure 3d,e). The exon 41 skipping lead to a Collagen XI α1 chain
shorter by 18 residues (1039–1056) in the α1 helical region. The variant has been submitted to LOVD
(https://databases.lovd.nl/shared/variants/0000687720#00023834, individual ID #00311016).
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Figure 3. Molecular findings of individual #3. (a) Pelvis and femora radiograph at birth showing
restricted ischiatic notch, early ossification of the proximal femoral epiphyses, enlarged distal femoral
and proximal tibial epiphyses, and flared metaphyses. (b) Electropherogram of COL11A1 exons 40–41
and flanking intron sequence showing the heterozygous c.3168 + 5G>C variant. Nucleotide sequences
are provided. (c) Predictions of the scores of splice acceptor sites of COL11A1 exon 37 of the wild-type
and mutated genomic bases. (d) Analysis of the c.3168 + 5G>C variant using the minigene construct.
The positions of the variant site and fragment containing exon 37 and its adjacent introns are indicated.
Analysis of mRNA from transfected HEK293 cells via RT-PCR (on the gel, C: empty vector; WT: wild
type; MUT: mutated) and (e) direct sequencing.

3.4. Individual #4: Clinical Report

This subject was a nine-month-old boy, born from heterologous in vitro fertilization to a 33-year-old
woman and an anonymous father. Third-trimester prenatal ultrasound revealed polyhydramnios.
Delivery was at term with a neonatal weight of 2500 g (3rd percentile), length of 45 cm (<1st percentile),
and head circumference of 34 cm (25◦ percentile). The Apgar score was 71/95. At birth, the neonatologist
noted hypotonia, micro/retrognathia, and U-shaped palatal cleft. Due to ineffective deglutition,
percutaneous endoscopic nutrition by gastrostomy was requested shortly after birth and lasted for
seven months. At that time, profound bilateral neurosensorial hearing loss was diagnosed and corrected
with external prostheses. The patient sat alone at 7.5 months. At nine months of age, length was 65 cm
(<1st percentile), weight was 5900 g (<1st percentile), and head circumference was 43 cm (1st percentile).
Physical examination revealed frontal bossing with incompletely closed anterior fontanel, flattening
of the malar region, hypoplastic nasal tip and bridge, anteverted nares, and retrognathia. A small
congenital melanocytic nevus was evident at the abdomen. The rest of the examination was normal.
Ophthalmological examination gave normal results. A pelvis radiograph at birth demonstrated broad
femoral proximal metaphyses and an enlarged sciatic notch (Figure 4a). His mother presented with
comparable facial features (i.e., flattened malar region, hypoplastic nasal bridge, anteverted nares).
When she was a child, the mother underwent maxillofacial surgery for palatal cleft. She did not refer
to any ocular or audiological problems. Stature was normal.
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Figure 4. Molecular findings of individual #4. (a) Pelvis radiograph at birth. Note the broad femoral
metaphyses and enlarged sciatic notch. (b) Electropherogram of COL11A2 exon 37 and flanking intron
sequence showing the heterozygous c.4392 + 1G>A variant. Nucleotide sequences are provided.
(c) Prediction of the scores of splice acceptor sites of COL11A2 exon 60 of the wild-type and mutated
genomic bases. (d) Analysis of the c.4392 + 1G>A variant using the minigene construct. The positions of
variant site and fragment containing exon 60 and its adjacent introns are indicated. Analysis of mRNA
from transfected HEK293 cells via RT-PCR (on the gel, C: empty vector; WT: wild type; MUT: mutated)
and (e) direct sequencing.sequence showing the heterozygous c.4392 + 1G>A variant. Nucleotide
sequences are provided. (c) Prediction of the scores of splice acceptor sites of COL11A2 exon 60 of the
wild-type and mutated genomic bases. (d) Analysis of the c.4392 + 1G>A variant using the minigene
construct. The positions of variant site and fragment containing exon 60 and its adjacent introns are
indicated. Analysis of mRNA from transfected HEK293 cells via RT-PCR (on the gel, C: empty vector;
WT: wild type; MUT: mutated) and (e) direct sequencing.
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Individual #4: Molecular Findings

NGS analysis found the unpublished c.4392 + 1G>A variant in intron 60 of COL11A2 (Table 1
and Figure 4b). This variant was previously described as “pathogenic” in ClinVar in a patient
with OSMED (https://www.ncbi.nlm.nih.gov/clinvar/variation/17120/). The variant was detected in
the affected mother, as confirmed by a co-segregation study. Bioinformatics tools suggested that
the mutant sequence might break the original splice site and affect pre-mRNA splicing (Figure 4c).
To confirm the predicted splicing defect of the mutated COL11A2 mRNA, we then analyzed COL11A2
transcripts expressed from mini-constructs containing the mutated or wild-type alleles in HEK293 cells.
After RT-PCR and gel separation of cDNA amplicons, we observed a size difference when comparing
products derived from the wild-type and mutated constructs (Figure 4d). The size difference was
consistent with a predicted altered splicing due to the c.4392 + 1G>A variant. Purification of the
gel-separated cDNA amplicons followed by sequence analysis confirmed that transcripts from the
mutated COL11A2 allele lacked 54 bp of exon 60, leading to the synthesis of a collagen XI α2 chain
shorter by 18 aa (1447–1464), located in the α2 helical region (Figure 4e). The variant has been submitted
to LOVD (https://databases.lovd.nl/shared/variants/0000687722#00024025, individual ID # 00311018).

4. Discussion

Here, we reported the clinical description, genomic investigation, and functional data of four
families with type 2 SS/OSMED due to deleterious variants affecting intronic splicing sites of COL11A1
and COL11A2. Two variants (i.e., c.2241 + 5G>T and c.3168 + 5G>C in COL11A1) were novel, while
the other two (i.e., c.2809 − 2A>G in COL11A1 and c.4392 + 1G>A in COL11A2) were unpublished
and reported in ClinVar without any data on their actual outcome at the mRNA level. In all but
one case (Individual #1), the overall clinical picture was suggestive of a COL2/COL11-pathy shortly
after birth at prompt clinical genetics consultation. In the remaining patient, who is the unique
adult in this case series, the suspicion of SS was considered more appropriate than Ehlers–Danlos
syndrome after tertiary center consultation and years of musculoskeletal pain. In all circumstances,
molecular testing was carried out with a virtual multigene panel designed for a wide range of partially
overlapping hereditary connective tissue disorders. The potential effect of the identified intronic
variants in generating abnormal alternative isoforms was predicted and then demonstrated with an
exon-trapping assay in all cases.

According to the ACMG guidelines, available data demonstrating the effects of intronic variants
on splicing are recommended for variants affecting both the canonical +/−1 or 2 splice site (intronic
variants within GT and AG splice site pairs) and non-canonical splice sites (rarer GT and AG intron
splice site pairs) [25,26]. Concerning canonical splice-site variants, current application of the PVS1
criterion may be eased by in vitro assays supporting in silico predictions, especially for private variants
or variants with scanty database and literature data [26]. The PVS1 criterion refers to the null variant
(nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion)
in a gene where loss of function is a known mechanism of disease. For intronic variants affecting
potential non-canonical splice sites or generating cryptic splice donor or acceptor sites, the results of
in vitro assays might help in the correct application of the PS3/BS3 (PS3: well-established in vitro or
in vivo functional studies supportive of a damaging effect on the gene or gene product; BS3: in-frame
deletions/insertions in a repetitive region without a known function) versus PVS1 criteria [26]. For these
variants, the lack of any experimental proof on the predicted post-genomic effects generally limits
their clinical interpretation to “variants of unknown significance”. Although RNA-splicing assays
cannot predict the effect of the intronic variant at the protein level, they can be easily standardized and
validated with unaffected controls for a potential clinical use.

In clinics, the choice of the most effective way to obtain in vitro data on intronic variants is critical.
In fact, not all genes are expressed in peripheral blood and not all conditions allow sampling of
other tissues according to the disease-specific clinical pathway. In addition, other accessible tissues
might not be effective for obtaining reliable data for functional assays. For example, fresh tissue
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sampling for obtaining a patient’s mRNA might be suboptimal, as transcripts are not stable within
tissues, and abnormal transcripts can be quickly degraded by nonsense-mediated mRNA decay.
Recently, exon-trapping assay approaches have been established as a relatively fast and accurate
tool to characterize potential splicing aberrations and to predict their effects at the transcriptional
level [21,27–29]. These constructs contain a genomic fragment from the gene of interest that includes
the exon(s) and partial or entire flanking intronic regions, and they are able to express wild-type
or aberrant pre-mRNAs by transient transfection, thus providing a rapid assay for evaluating the
transcriptional effect of intronic variants.

Here, we molecularly explored the transcriptional impact of four unpublished intronic variants in
COL11A1 (c.2241 + 5G>T, c.2809 − 2A>G, c.3168 + 5G>C) and COL11A2 (c.4392 + 1G>A) associated
with type 2 SS/OSMED. The COL11A1 c.2241 + 5G > T and c.3168 + 5G>C variants were predicted
to abolish the donor splice site of exons 26 and 41, respectively. On the contrary, the c.2809 − 2A>G
COL11A1 variant was predicted to disrupt the acceptor splice site of exon 37. We confirmed aberrant
splicing of exons 26, 37, and 41 due to c.2241 + 5G>T, c.2809 − 2A>G, and c.3168 + 5G>C COL11A1
variants, respectively, by using an exon-trapping assay. Aberrant splicing leading to skipping of exons
26, 37, and 41 would result in an in-frame deletion and collagen XI α1 chains lacking residues 733−747
(15 aa), 937−954 (18 aa), 1039–1056 (18 aa), respectively. Kohmoto et al. (2015) reported an SS patient
carrying a heterozygous intronic COL11A1 variant affecting the residue c.3168 + 5G with a different
substitution (G>A), which results in the skipping of the entire exon 41, as demonstrated by an exon
trapping strategy [30]. Similar results from a minigene assay have been previously reported in SS for a
small insertion recurring in intron 41 of COL11A1 [31,32]. Based on all of this experimental evidence,
we speculate that intron 41 may be a mutational hot spot for splicing variants in SS Type 2. The c.4392
+ 1G>A COL11A2 splice site variant was predicted to result in the synthesis of a shorter collagen XI α2
lacking 18 aa (1447–1464). Our exon-trapping assay confirmed such a prediction at the mRNA level
and, hence, the efficacy of such an in vitro tool in confirming in silico prediction of intronic splicing
variants in COL11A2.

The lacking COL11A1 and COL11A2 residues are located in the α-triple helical region of collagen
fiber. Each collagen is usually made of three different polypeptides, designated as α1, α2, and α3,
and encoded by COL11A1, COL11A2, and COL2A1, respectively. The three α chains form the triple
helical part of the molecule and contribute differentially in the proper formation and function of
bones, cartilage, and the ocular and auditory systems [33,34]. Similarly to the other fibrillar collagens,
it is composed of repeating peptide triplets of “glycine-X-Y”, where X and Y can be any amino acid,
most often proline and hydroxyproline, respectively. The lack of the glycine-X-Y triplets encoded by
exons 26, 37, and 42 of COL11A1 and exon 60 of COL11A2 could result in altered collagen molecules
that generate an aberrant triple helix collagen with a presumed dominant negative effect [32].

Analysis of whole RNA from individuals harboring the COL11A1 and COL11A2 variants would
better define the splicing defects resulting from these variants. Unfortunately, COL11A1 and COL11A2
are not expressed in peripheral blood, and other tissues were not available for these individuals.
Reasonably, it is possible that other splicing events occur in addition to exon skipping but could not be
detected with the current minigene design. Since only parts of introns flanking the exons carrying
the identified COL11A1 and COL11A2 variants were tested with our approach, we were unable to
determine whether these variants might also activate a cryptic donor/acceptor site(s) somewhere
outside the investigated sequence to generate larger aberrant exons.

In conclusion, we demonstrated that the exon-trapping essay can be effectively applied to test
the predicted splicing effect of the COL11A1 and COL11A2 intronic variant. Given the high rate of
potentially deleterious variants falling in intronic sequences of such genes, our results prompt the
integration of such investigations as second-tier analyses in the diagnostic workflow of laboratories
with interest in collagen-related hereditary disorders.



Genes 2020, 11, 1513 14 of 15

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/12/1513/s1,
Table S1: Sequences of COL11A1 and COL11A2 primers used in this study.

Author Contributions: Conceptualization, L.M., S.M., and M.C.; methodology, L.M., A.S., C.F., and G.N.; software,
S.C. and A.S.; data curation: P.G. and A.N.; validation, M.F.B., L.M., A.S., C.F., and G.N.; formal analysis, L.M., E.A.,
and V.G.; investigation, L.M., A.S., C.F., and G.N.; data curation, M.C., P.G., L.M., S.M., and A.N.; writing—original
draft preparation, C.F., L.M., S.M., and M.C.; writing—review and editing, E.A., M.F.B., P.G., V.G., A.N., and R.V.;
supervision, L.M. and M.C.; project administration, L.M. and M.C.; funding acquisition, L.M. and M.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ricerca Corrente 2018–2020 Program of the Italian Ministry of Health.

Acknowledgments: The authors thank the families for their kind availability in sharing the findings within
the scientific community. We acknowledge S.W. Tompson (Department of Ophthalmology and Visual Sciences,
University of Wisconsin—Madison) for providing the pSPL3 vector.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Snead, M.P.; Yates, J.R. Clinical and Molecular genetics of Stickler syndrome. J. Med. Genet. 1999, 36, 353–359.
2. Snead, M.P.; McNinch, A.M.; Poulson, A.V. Stickler syndrome, ocular-only variants and a key diagnostic role

for the ophthalmologist. Eye 2011, 25, 1389–1400. [CrossRef]
3. Shapiro, M.J.; Blair, M.P.; Solinski, M.A.; Zhang, D.L.; Jabbehdari, S. The importance of early diagnosis of

Stickler syndrome: Finding opportunities for preventing blindness. Taiwan J. Ophthalmol. 2018, 8, 189–195.
[CrossRef]

4. Stickler, G.B.; Hughes, W.; Houchin, P. Clinical features of hereditary progressive arthro-ophthalmopathy
(Stickler syndrome): A survey. Genet. Med. 2001, 3, 192–196. [CrossRef]

5. Stickler, G.B.; Belau, P.G.; Farrell, F.J. Hereditary Progressive arthro-ophthalmopathy. Mayo Clin. Proc.
1965, 40, 433–455.

6. Rose, P.S.; Levy, H.P.; Liberfarb, R.M. Stickler syndrome: Clinical characteristics and diagnostic criteria.
Am. J. Med. Genet. A 2005, 138, 199–207. [CrossRef]

7. Ahmad, N.N.; Ala-Kokko, L.; Knowlton, R.G. Stop codon in the procollagen II gene (COL2A1) in a family with
the Stickler syndrome (arthro-ophthalmopathy). Proc. Natl. Acad. Sci. USA 1991, 88, 6624–6627. [CrossRef]

8. Richards, A.J.; Yates, J.R.; Williams, R. A family with Stickler syndrome type 2 has a mutation in the COL11A1
gene resulting in the substitution of glycine 97 by valine in α 1 (XI) collagen. Hum. Mol. Genet. 1996, 5, 1339–1343.
[CrossRef]

9. Martin, S.; Richards, A.J.; Yates, J.R. Stickler syndrome: Further mutations in COL11A1 and evidence for
additional locus heterogeneity. Eur. J. Hum. Genet. 1999, 7, 807–814. [CrossRef]

10. Sirko-Osadsa, D.A.; Murray, M.A.; Scott, J.A. Stickler syndrome without eye involvement is caused by mutations
in COL11A2, the gene encoding the alpha2(XI) chain of type XI collagen. J. Pediatr. 1998, 132, 368–371. [CrossRef]

11. Vuoristo, M.M.; Pappas, J.G.; Jansen, V.; Ala-Kokko, L. A stop codon mutation in COL11A2 induces exon
skipping and leads to non-ocular Stickler syndrome. Am. J. Med. Genet. A 2004, 130, 160–164. [CrossRef]

12. Baker, S.; Booth, C.; Fillman, C. A loss of function mutation in the COL9A2 gene causes autosomal recessive
Stickler syndrome. Am. J. Med. Genet. A 2011, 155, 1668–1672. [CrossRef]

13. Faletra, F.; D’Adamo, A.P.; Bruno, I. Autosomal recessive Stickler syndrome due to a loss of function mutation
in the COL9A3 gene. Am. J. Med. Genet. A 2014, 164, 42–47. [CrossRef]

14. Hanson-Kahn, A.; Li, B.; Cohn, D.H. University of Washington Center for Mendelian Genomics, Hudgins,
L. Autosomal recessive Stickler syndrome resulting from a COL9A3 mutation. Am. J. Med. Genet. A
2018, 176, 2887–2891. [CrossRef]

15. Van Camp, G.; Snoeckx, R.L.; Hilgert, N. A new autosomal recessive form of Stickler syndrome is caused by
a mutation in the COL9A1 gene. Am. J. Hum. Genet. 2006, 79, 449–457. [CrossRef]

16. Chan, T.K.; Alkaabi, M.K.; ElBarky, A.M.; El-Hattab, A.W. LOXL3 novel mutation causing a rare form of
autosomal recessive Stickler syndrome. Clin. Genet. 2019, 95, 325–328. [CrossRef]

17. Ewans, L.J.; Colley, A.; Gaston-Massuet, C. Pathogenic variants in PLOD3 result in a Stickler syndrome-like
connective tissue disorder with vascular complications. J. Med. Genet. 2019, 56, 629–638. [CrossRef]

http://www.mdpi.com/2073-4425/11/12/1513/s1
http://dx.doi.org/10.1038/eye.2011.201
http://dx.doi.org/10.4103/tjo.tjo_97_18
http://dx.doi.org/10.1097/00125817-200105000-00008
http://dx.doi.org/10.1002/ajmg.a.30955
http://dx.doi.org/10.1073/pnas.88.15.6624
http://dx.doi.org/10.1093/hmg/5.9.1339
http://dx.doi.org/10.1038/sj.ejhg.5200377
http://dx.doi.org/10.1016/S0022-3476(98)70466-4
http://dx.doi.org/10.1002/ajmg.a.30111
http://dx.doi.org/10.1002/ajmg.a.34071
http://dx.doi.org/10.1002/ajmg.a.36165
http://dx.doi.org/10.1002/ajmg.a.40647
http://dx.doi.org/10.1086/506478
http://dx.doi.org/10.1111/cge.13465
http://dx.doi.org/10.1136/jmedgenet-2019-106019


Genes 2020, 11, 1513 15 of 15

18. Schrauwen, I.; Sommen, M.; Claes, C. Broadening the phenotype of LRP2 mutations: A new mutation in LRP2
causes a predominantly ocular phenotype suggestive of Stickler syndrome. Clin. Genet. 2014, 86, 282–286.
[CrossRef]

19. Vázquez-Villa, F.; García-Ocaña, M.; Galván, J.A. COL11A1/(pro)collagen 11A1 expression is a remarkable
biomarker of human invasive carcinoma-associated stromal cells and carcinoma progression. Tumour. Biol.
2015, 36, 2213–2222. [CrossRef]

20. Grundberg, E.; Brändström, H.; Lam, K.C. Systematic assessment of the human osteoblast transcriptome in
resting and induced primary cells. Physiol. Genom. 2008, 33, 301–311. [CrossRef]

21. Booth, K.T.; Askew, J.W.; Talebizadeh, Z. Splice-altering variant in COL11A1 as a cause of nonsyndromic
hearing loss DFNA37. Genet. Med. 2019, 21, 948–954. [CrossRef]

22. Sauna, Z.E.; Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease.
Nat. Rev. Genet. 2011, 12, 683–691. [CrossRef]

23. Richards, S.; Aziz, N.; Bale, S. ACMG Laboratory Quality Assurance Committee. Standards and guidelines
for the interpretation of sequence variants: A joint consensus recommendation of the American College of
Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424.
[CrossRef]

24. Tompson, S.W.; Young, T.L. Assaying the Effects of Splice Site Variants by Exon Trapping in a Mammalian
Cell Line. Biol. Protoc. 2017, 7, e2281. [CrossRef]

25. Abou Tayoun, A.N.; Pesaran, T.; DiStefano, M.T. ClinGen Sequence Variant Interpretation Working Group
(ClinGen SVI). Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion.
Hum. Mutat. 2018, 39, 1517–1524. [CrossRef]

26. Brnich, S.E.; Abou Tayoun, A.N. Clinical Genome Resource Sequence Variant Interpretation Working Group.
Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP
sequence variant interpretation framework. Genome Med. 2019, 12, 3. [CrossRef]

27. Nozu, K.; Iijima, K.; Kawai, K. In vivo and in vitro splicing assay of SLC12A1 in an antenatal salt-losing
tubulopathy patient with an intronic mutation. Hum. Genet. 2009, 126, 533–538. [CrossRef]

28. Yamamura, T.; Nozu, K.; Miyoshi, Y. An in vitro splicing assay reveals the pathogenicity of a novel intronic
variant in ATP6V0A4 for autosomal recessive distal renal tubular acidosis. BMC Nephrol. 2017, 18, 353.
[CrossRef]

29. Yamamura, T.; Nozu, K.; Ueda, H. Functional splicing analysis in an infantile case of atypical hemolytic
uremic syndrome caused by digenic mutations in C3 and MCP genes. J. Hum. Genet. 2018, 63, 755–759.
[CrossRef]

30. Kohmoto, T.; Naruto, T.; Kobayashi, H. A novel COL11A1 mutation affecting splicing in a patient with
Stickler syndrome. Hum. Genome Var. 2015, 12, 15043. [CrossRef]

31. Richards, A.J.; McNinch, A.; Martin, H. Stickler syndrome and the vitreous phenotype: Mutations in COL2A1
and COL11A1. Hum. Mutat. 2010, 31, E1461–E1471. [CrossRef]

32. Richards, A.J.; Fincham, G.S.; McNinch, A. Alternative splicing modifies the effect of mutations in COL11A1
and results in recessive type 2 Stickler syndrome with profound hearing loss. J. Med. Genet. 2013, 50, 765–771.
[CrossRef]

33. Acke, F.R.; Dhooge, I.J.; Malfait, F.; De Leenheer, E.M. Hearing impairment in Stickler syndrome: A systematic
review. Orphanet. J. Rare Dis. 2012, 30, 84. [CrossRef]

34. Myllyharju, J.; Kivirikko, K.I. Collagens and collagen-related diseases. Ann. Med. 2001, 33, 7–21. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/cge.12265
http://dx.doi.org/10.1007/s13277-015-3295-4
http://dx.doi.org/10.1152/physiolgenomics.00028.2008
http://dx.doi.org/10.1038/s41436-018-0285-0
http://dx.doi.org/10.1038/nrg3051
http://dx.doi.org/10.1038/gim.2015.30
http://dx.doi.org/10.21769/BioProtoc.2281
http://dx.doi.org/10.1002/humu.23626
http://dx.doi.org/10.1186/s13073-019-0690-2
http://dx.doi.org/10.1007/s00439-009-0697-7
http://dx.doi.org/10.1186/s12882-017-0774-4
http://dx.doi.org/10.1038/s10038-018-0436-9
http://dx.doi.org/10.1038/hgv.2015.43
http://dx.doi.org/10.1002/humu.21257
http://dx.doi.org/10.1136/jmedgenet-2012-101499
http://dx.doi.org/10.1186/1750-1172-7-84
http://dx.doi.org/10.3109/07853890109002055
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Patients’ Enrollment 
	Sample Preparation and Next-Generation Sequencing Analysis 
	Sanger Sequencing 
	In Silico Variant Analysis 
	Variant Designation 
	Minigene Assay 

	Results 
	Individual #1: Clinical Report 
	Individual #2: Clinical Report 
	Individual #3: Clinical Report 
	Individual #4: Clinical Report 

	Discussion 
	References

