34 research outputs found

    From Slater to Mott-Heisenberg physics: The antiferromagnetic phase of the Hubbard model

    Full text link
    We study the optical conductivity of the one-band Hubbard model in the N\'eel state at half filling at T=0 using the dynamical mean-field theory. For small values of the Coulomb parameter clear signatures of a Slater insulator expected from a weak-coupling theory are found, while the strongly correlated system can be well described in terms of a Mott-Heisenberg picture. However, in contrast to the paramagnet, we do not find any evidence for a transition between these two limiting cases but rather a smooth crossover as a function of the Coulomb interaction.Comment: 8 pages, 9 figure

    Evolutionary algorithms for the selection of single nucleotide polymorphisms

    Get PDF
    BACKGROUND: Large databases of single nucleotide polymorphisms (SNPs) are available for use in genomics studies. Typically, investigators must choose a subset of SNPs from these databases to employ in their studies. The choice of subset is influenced by many factors, including estimated or known reliability of the SNP, biochemical factors, intellectual property, cost, and effectiveness of the subset for mapping genes or identifying disease loci. We present an evolutionary algorithm for multiobjective SNP selection. RESULTS: We implemented a modified version of the Strength-Pareto Evolutionary Algorithm (SPEA2) in Java. Our implementation, Multiobjective Analyzer for Genetic Marker Acquisition (MAGMA), approximates the set of optimal trade-off solutions for large problems in minutes. This set is very useful for the design of large studies, including those oriented towards disease identification, genetic mapping, population studies, and haplotype-block elucidation. CONCLUSION: Evolutionary algorithms are particularly suited for optimization problems that involve multiple objectives and a complex search space on which exact methods such as exhaustive enumeration cannot be applied. They provide flexibility with respect to the problem formulation if a problem description evolves or changes. Results are produced as a trade-off front, allowing the user to make informed decisions when prioritizing factors. MAGMA is open source and available at . Evolutionary algorithms are well suited for many other applications in genomics

    Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation

    Get PDF
    Wind farm layout optimisation is a challenging real-world problem which requires the discovery of trade-off solutions considering a variety of conflicting criteria, such as minimisation of the land area usage and maximisation of energy production. However, due to the complexity of handling multiple objectives simultaneously, many approaches proposed in the literature often focus on the optimisation of a single objective when deciding the locations for a set of wind turbines spread across a given region. In this study, we tackle a multi-objective wind farm layout optimisation problem. Different from the previously proposed approaches, we are applying a high-level search method, known as selection hyper-heuristic to solve this problem. Selection hyper-heuristics mix and control a predefined set of low-level (meta)heuristics which operate on solutions. We test nine different selection hyper-heuristics including an online learning hyper-heuristic on a multi-objective wind farm layout optimisation problem. Our hyper-heuristic approaches manage three well-known multi-objective evolutionary algorithms as low-level metaheuristics. The empirical results indicate the success and potential of selection hyper-heuristics for solving this computationally difficult problem. We additionally explore other objectives in wind farm layout optimisation problems to gain a better understanding of the conflicting nature of those objectives

    Kondo screening in d-wave superconductors in a Zeeman field and implications for STM spectra of Zn-doped cuprates

    Full text link
    We consider the screening of an impurity moment in a d-wave superconductor under the influence of a Zeeman magnetic field. Using the Numerical Renormalization Group technique, we investigate the resulting pseudogap Kondo problem, in particular the field-induced crossover behavior in the vicinity of the zero-field boundary quantum phase transition. The impurity spectral function and the resulting changes in the local host density of states are calculated, giving specific predictions for high-field STM measurements on impurity-doped cuprates.Comment: 5 pages, 4 figs, (v2) remark on c-axis field added, discussion extended, (v3) final version as publishe

    Multi-objective optimisation for regression testing

    Get PDF
    Regression testing is the process of retesting a system after it or its environment has changed. Many techniques aim to find the cheapest subset of the regression test suite that achieves full coverage. More recently, it has been observed that the tester might want to have a range of solutions providing different trade-offs between cost and one or more forms of coverage, this being a multi-objective optimisation problem. This paper further develops the multi-objective agenda by adapting a decomposition-based multi-objective evolutionary algorithm (MOEA/D). Experiments evaluated four approaches: a classic greedy algorithm; non-dominated sorting genetic algorithm II (NSGA-II); MOEA/D with a fixed value for a parameter cc; and MOEA/D in which tuning was used to choose the value of cc. These used six programs from the SIR repository and one larger program, VoidAuth. In all of the experiments MOEA/D with tuning was the most effective technique. The relative performance of the other techniques varied, although MOEA/D with fixed cc outperformed NSGA-II on the larger programs (Space and VoidAuth)

    Optimal control theory - closing the gap between theory and experiment

    Get PDF
    Optimal control theory and optimal control experiments are state-of-the-art tools to control quantum systems. Both methods have been demonstrated successfully for numerous applications in molecular physics, chemistry and biology. Modulated light pulses could be realized, driving these various control processes. Next to the control efficiency, a key issue is the understanding of the control mechanism. An obvious way is to seek support from theory. However, the underlying search strategies in theory and experiment towards the optimal laser field differ. While the optimal control theory operates in the time domain, optimal control experiments optimize the laser fields in the frequency domain. This also implies that both search procedures experience a different bias and follow different pathways on the search landscape. In this perspective we review our recent developments in optimal control theory and their applications. Especially, we focus on approaches, which close the gap between theory and experiment. To this extent we followed two ways. One uses sophisticated optimization algorithms, which enhance the capabilities of optimal control experiments. The other is to extend and modify the optimal control theory formalism in order to mimic the experimental conditions

    Magnetism and phase saration in the ground state of the Hubbard model

    No full text
    Magnetism and phase saration in the ground state of the Hubbard model / R. Zitzler, Th. Pruschke, R. Bulla. – In: European physical journal. B. 27. 2002. S. 473-48
    corecore