
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Building energy optimization in the early design stages: A simplified method

Negendahl, Kristoffer; Nielsen, Toke Rammer

Published in:
Energy and Buildings

Link to article, DOI:
10.1016/j.enbuild.2015.06.087

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Negendahl, K., & Nielsen, T. R. (2015). Building energy optimization in the early design stages: A simplified
method. Energy and Buildings, 105, 88-89. DOI: 10.1016/j.enbuild.2015.06.087

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43251181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.enbuild.2015.06.087
http://orbit.dtu.dk/en/publications/building-energy-optimization-in-the-early-design-stages-a-simplified-method(ecc7792e-77ac-485e-9649-d9691cfea5a8).html


Accepted Manuscript

Title: Building energy optimization in the early design stages:
A simplified method

Author: Kristoffer Negendahl Toke Rammer Nielsen

PII: S0378-7788(15)30088-8
DOI: http://dx.doi.org/doi:10.1016/j.enbuild.2015.06.087
Reference: ENB 6009

To appear in: ENB

Received date: 5-3-2015
Revised date: 7-5-2015
Accepted date: 23-6-2015

Please cite this article as: K. Negendahl, T.R. Nielsen, Building energy optimization
in the early design stages: a simplified method, Energy and Buildings (2015),
http://dx.doi.org/10.1016/j.enbuild.2015.06.087

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.enbuild.2015.06.087
http://dx.doi.org/10.1016/j.enbuild.2015.06.087


Page 1 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

Highlights 

 

  

 Optimization (building energy related) in the early design stage is reviewed 

 Quasi-steady-state methods for building energy design are reviewed 

 New hourly Quasi-steady-state (HQSS) method is described  

 Based on a real problem HQSS is demonstrated for multivariate optimization (with other BPS tools) 

 HQSS in integrated dynamic models provide high speed and flexibility needed in the early design stage 

Highlights for review
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1. Introduction 

Building energy optimizations during the early design stages, where 

information levels are low and design changes are frequent, induce 

risks of high uncertainty and excessive amount of calculations. Many 
researchers reason that building performance simulation (BPS) tools 

in the early design stages is beneficial for building performance such 

as energy, daylight and thermal indoor environment. However, BPS 
tools are rarely used in the early design process, consequently 

optimization with such tools are far from integrated in the early 

design stage in practice. 

Augenbroe [1] argues to better inform the early design BPS tools 
need to support: 1) A rapid evaluation of designs alternatives, 2) 

different types of decision making processes and 3) designers‟ ability 

to solve nonlinear and multi-criteria problems. Struck [2] 
supplements that BPS tools must be flexible and fast enough to 

facilitate changing representations of innovative design concepts thus 

being able to dynamically scale the model resolution to fit the 
different information levels. Few tools live up to any such 

expectations. Simplified BPS tools are fast but only provide 

simplified feedback while more advanced BPS tools are difficult to 
use and are often slow in comparison to the simpler tools. 

Furthermore, only a fraction of these BPS tools can be used in 

automated processes required to perform building energy 
optimization. The choice of simplified BPS tools in the early design 

stages seems to be favored by most practitioners [3]. However, with 

the purpose of designing with optimization, simplified BPS tools 
may evidently increase risks of returning inaccurate results, which 

defies the purpose of using optimization processes in the early design 

stage. Even though techniques of BPS are undergoing rapid change 
and dramatic improvements in computing power, algorithms, not 

feasible only a few years ago [4], the balance between achieving 

sufficient accuracy and the ability to provide highly flexible and fast 
feedback to the designer, is still today base for discussion. 

In general most methods which apply optimization in early design 

stages focus on non-geometrical variables such as changing U-

values, or system requirements and rarely put the analyses in context 
of project specific architectural solutions. Obviously compulsory and 

ambitious use of optimization algorithms in the early design stage is 

of architectural concern. Hermund [5] reacts towards optimization in 
the design processes:  

“Linear working methods that promote the reduction of the 

creative loops in favor of systemic optimization is one topic that must 

be addressed by architects … Relying on one integrated model 
(referring to IFC- and gbXML-models) could mean an eventual loss 

of control with real value of the architectural quality: to create 

meaningful and beautiful spaces for real people.” Hermund [5] 

The concern of using optimization processes in early design is very 
real, regardless of how the model is constructed. However, the 

benefit of optimization may in many cases exceed the downsides of 

artistic control if the optimization processes is controlled and 
supervised by the designers themselves. And to counter this problem, 

geometrical design concepts representing architectural ideas in 

variations must be easy to integrate with the optimization process. 
Based on Mora et al. [6] Struck et al. [7] point out such process is 

supported when the method is able to:  

 Assisting rather than automating design. 

 Facilitate the quick generation of integrated solutions. 

 Shorten synthesis analysis evaluation cycles. 

 Support an interaction and selection of most suitable 

design alternatives. 

With the ambition to advance combined qualitative assessments and 
quantitative optimization in the early design stage, a simplified 

method to whole building energy optimization is proposed. Based on 

a real life design problem the article first explains the need for a very 
fast whole building simulation that could (to an acceptable level of 

precision) present the whole building energy consumption, the price 

of the façade, the amount of daylight in every zone and estimate the 
risk of thermal overheating problems inside the building. All this 

must be done in a way to make informed feedbacks to the designer 

on limited amount of information. As a response to these needs this 
paper shows a new method that allows multi objective optimization 

with the inclusion of project specific qualitative constraints.  

Our approach chooses various simple BPS tools coupled together 

with a visual scripting tool and results are visualized in the architects 
design tool. The reasoning to use simple BPS tools over the more 

complicated and precise simulation tools, are compressed into three 
requests: 1) to overcome the limited time available in the early 

design stage, optimization must be as fast as possible. 2) The coupled 

Building energy optimization in the early design stages:  
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BPS tools have to fit the early design stage, hence they must be able 
to make use of the limited amount of information available. And 3) 

the tools have to fit into an integrated environment that can take the 

entire design team‟s expertise into account.   

The main focus is on the building envelope optimized for whole 
building energy consumption, daylight distribution, thermal 

environment and cost. The method relies on an integrated dynamic 

model [8] that incorporates a design (CAD) tool Rhinoceros [9] a 
visual programming language (VPL) Grasshopper [10], the existing 

BPS tools Radiance [11], Be10 [12] and a new hourly based quasi-

steady-state tool (HQSS) to estimate hourly heat gains with the 
purpose to prevent overheating problems at zone level.  

2. Background and related research 

Optimization as a process favors limited aspects of a system, which 
need to be differentiable in the design parameters [13] while 

constraints and objectives need to be clearly defined. Therefore, 
optimization as a process will often discount those aspects, which has 

not been included in the cost function. This is arguably the main 

reason why research in optimization focuses on quantitative 
performance objectives over qualitative evaluations. Nonetheless 

many researchers have sought to reconcile the level of artistic control 

to optimize on predefined criteria with predefined constraints. One 
example is Petersen [14] who focuses on a list of very specific 

elements of the particular design instead of aiming for a complete 

evaluation of every parameter in the early design stage. By limiting 
the search space the design team saves time in the early design 

process and optimization may be handled by human thinking alone. 

However, when design problems grow with design variables and 
objectives, algorithmic optimization becomes ever more attractive. 

To make the design exploration computational feasible to Hopfe and 

Hensen [15] argued the analysis of sensitive variables is a good 

starting point for a more integrated design analysis. This of course 
can be applied to project specific cases that employ stochastic 

analyses of building models to provide the designer faster indications 

on which variables are more sensitive or robust. To further speed up 
this process Hopfe et al. [16] used surrogate modeling techniques to 

approximate the objective functions on energy consumption and 

over/under-heating hours. The method used Gaussian processes 
(Kriging) which correlate quite strongly with the introduced noise on 

the design parameters, basically to model real-life uncertainties. The 

idea to use increasingly adaptive surrogate models have also shown 
promise to include more qualitative assessments (that often means 

many more design variables) by listening to design variables and 

predicting user requests as suggested by Negendahl et al. [17]. 
However, this concept has not yet been coupled with optimization 

algorithms and need further developments in predicting user requests 

are needed.   

Another approach to decrease computationally expensive 
calculations is to implement adaptive precision control in the BPS 

tool and approximate cost functions for example Wetter & Polak  

[18]. This, however require deep access to the solvers precision 
parameters. In many BPS tools these are fixed at compile time and 

are hard to access. Nonetheless, Wetter & Polak showed promising 

results by applying a Hooke-Jeeves optimization algorithm with 
precision control on a static SPARK model. 

Wright et al. [19] showed one of the more recent attempts in 

applying multi-objective optimization with quality defined 

constraints into the early design. The design in this context was 
considered by constraining the geometric proportions of the façade 

by the golden ratio and visualizing optimal solutions lying on the 

trade-off between energy use and capital cost. Other efforts to 

improve the integration of the design process and the energy 

performance domain include: Caldas [20] and Wang et al. [21] who 

attempts to involve the more subjective and qualitative objectives 
into optimization processes. Kim et al. [22] use an agent point 

strategy to control overall building geometry, this is coupled to a 

CFD tool and genetic algorithm to optimize wind flow around the 

building. They considered one building typology and argued that the 
method would provide design options and educated intuition for 

architects to incorporate in design practices. Gerber & Lin [23,24] 

showed a prototype tool (H.D.S Beagle) to integrate parametric 
geometry, energy simulation with Green Building Studio and 

optimization into the early design stage. And finally the ParaGen 

project [25] by Turrin et al. explored a performance based design 
process by combining parametric modelling and genetic algorithms 

correlating structural performance and solar energy. All of these 

methods heavily depend on high computational power and are 
therefore difficult to use within the limited timeframe of the early 

design stage.  

Ideally faster or even “real-time evaluation speed” like found in the 

approach of Sanguinetti et al. [26] combined with better quality 
assurances and implementation of robust optimization methods is to 

be preferred. Sanguinetti et al. argued for the fast performance 

feedback as one of the main drivers for designers to explore design 
alternatives. Their solution was an integration of design synthesis and 

analysis is implemented through coupling simple parametrically 

controlled geometric representations generated in a design tool with 
normative calculations in spreadsheets. The method proved to be 

highly flexible and could serve project specific design explorations 

which include almost any qualitative considerations. However they 
did not show the option to include an optimization algorithm, and did 

not address the problems of tool validity. 

The progress and development of integrated dynamic models [8] 

where a visual programming languages (VPL) can dynamically 
couple a design tool to one or more BPS tools have made it easy for 

non-developers to implement new assessment methods during the 

early design stages. Integrated dynamic models can assist the 
building designer in providing performance feedback on sketch like 

models in the early design stages and automate system designs and 

other undecided design inputs. Negendahl [8] argues one of the 
advantages of using integrated dynamic models over e.g. simulation 

packages is the ability to couple any type and number of BPS tools to 

the design tool environment. This helps the designer to maintain 
control of the artistic qualities of the model while receiving visual 

consequence feedback from the coupled BPS tools within their native 

design tool. Sargent et al. [27] showed a method to reduce cooling 
loads by back-tracing rays from different solar angles to construct a 

3-dimensional “shading volume” (at room level). The method used 
an algorithm to calculate the fraction of beam component energy 

considered desired configuration for the external shading volume. 

The BPS tool Energy+ was used to evaluate thermal and energy 
performance. Over existing methods, their method was found more 

flexible, mainly because of the coupled CAD tool and scripting 

environment in the integrated dynamic model. With little effort, 

integrated dynamic models can be coupled with optimization 

algorithms such is the case of Darwin [28] and Galapagos [29]. 

These additions to an integrated dynamic model support a wide 
variety of interaction and selection of most suitable design 

alternatives. This means integrated dynamic models with 

optimization algorithms may be one of the better options when 
seeking to integrate architectural qualities into the optimization 

process.  

The following sections of the article examine how to facilitate quick 

generations of integrated solutions and shorten the synthesis analyses 
of evaluation cycles. This especially relates to model speed and type 

of tools used in the early design stage. 

3 Method 

3. 1 Choice of building performance simulation 

tools  

Table 1 describes three different BPS tools applied in the method; all 

chosen for their ability to evaluate performance with minimum 
computational power and dynamically deliver the results back into 

the model. 
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Radiance [11] (Evaluation of daylight, Table 1) is processed through 
the interface Honeybee [30] while Be10 [12] (Evaluation of building 

energy consumption, Table 1) is processed through the interface 

Termite [31]. Be10/Termite performs monthly averaged quasi-
steady-state calculations and is used in Denmark to evaluate energy 

consumption of all new buildings. The hourly quasi-steady-state 

method (shortened HQSS) (Evaluation of thermal overheating, Table 
1) is written in python and Grasshopper and is based on ISO 13790 

[32]. 

The monthly calculation performed by Be10/Termite gives accurate 

results on an annual basis as demonstrated by Christensen et al. [33]. 
But the results for individual months close to the beginning and the 

end of the heating and cooling season can have large relative errors 

[32]. Monthly quasi-steady-state calculations may be sufficient to 
estimate building energy use but is considered too uncertain as a 

method to estimate thermal indoor environment. For this reason an 

alternative quasi-steady-state method for hourly calculations has 
been added to the model. The HQSS tool facilitates the calculation 

using hourly user schedules (such as temperature set-points, 

ventilation modes and hourly control options based on outdoor or 
indoor climatic conditions). The tool produces hourly results, but 

similar to other quasi-steady-state hourly calculation methods, the 

results for individual hours are not validated and individual hourly 
values can have large relative errors [32]. Nevertheless, for early 

design stage estimation the use of hourly calculation methods is 

expected sufficient in detail and precision (more on this statement is 
discussed in part 7). The HQSS tool is used to estimate an average 

hourly heat balance to determine whether the cooling load can 

sustain the internal and external heat gains. 

Worth noting is that the computing power of using hourly calculation 
is around 2 orders of magnitude more intensive than divisional period 

(e.g. monthly) quasi-steady-state methods. However, this is still at 

least one order of magnitude less computational intensive than 
detailed dynamic simulation methods. 

3.1.1 Hourly quasi-steady-state method 

In the following section the HQSS tool is explained. When 

considering risk of overheating only few tools presently can evaluate 

whole buildings fast enough to effectively be used in early stage 
design processes. The tool is now a part of the Termite plugin for 

Grasshopper which can be found and downloaded at 

http://cobalab.dk/    

The purpose of HQSS tool is a simple evaluation of cooling capacity 
efficiency on hourly basis simply by determining the accumulated 

hours where the cooling capacity        does not meet the heat loads 

      at each calculation step  : 

                

  

   

 (1) 

 

where        
 is the cooling capacity and       is the heat loads at 

any calculation step  ,   is defined as one hour in the range of a year 

of 8760 hours. However, to speed up the calculation process the 

amount of calculation steps,    is reduced in two ways. A) Only 

hours,   within the service period (usage profile) of the given zone 

are considered, in this case as an office open [08-17] every day, all 

year. B) Only hours,   where direct solar irradiance has an effect on 
the given zone are considered, see equation (8). 

 

Each building zone for each calculation step the total heat 

transfer,     is given by [32]: 

             (2) 

 

where     is the total heat transfer by transmission and     is the 
total heat transfer by ventilation.  

The total heat gains are expressed as:  

               (3) 

 

where     is the total heat gains for each calculation step,      is the 

sum of internal heat gains, and      is the sum of solar heat gains 

over the given period. 

The ideal cooling demand in any point in time where the sum of  heat 
gains are larger than the sum of (positive) heat transfers can be 

expressed as; 

                           (4) 

 
where            is the needed amount of cooling to maintain set 

point temperatures and       a dimensionless utilization factor 

depended on time constants and used specifically in seasonal and 

monthly calculation periods [32]. When the maximum cooling 

capacity,        is known, equation (4) can be written as; 

                            (5) 

 

The internal gains,      for each zone k in each calculation step   can 

be extracted as; 

                                   

  

   

   (6) 

 

where k is the zone and    is the number of zones in the building, 

                and                are assumed constant in 

every calculation step   (since only the service period is considered). 

         is calculated as the interpolated value based on a daylight 

factor,    from radiance (see equation 13.) The daylight factor is 

reduced to; if           and the effect          is normalized 

to fit the range         with the expression: 

           

 
                                       

       
               

(7) 

 
The solar gains,       is assumed to be composed of a direct beam 

component depended on solar position  , and a constant diffuse 

component depend on the sun position in the calculation step  ; 

      

                               

  

   

   

  

   

   
(8) 

 

where   is the window in a façade and    is the number of windows 

in the zone,   is the unique sun vector visible from the window and 

   is the total amount of vectors.   is the incidence angle to the sun 

vector, and    is the correspondent (beam component) effect from the 

sun.   is the g-value of window pane,   is an adjustment factor Table 1 BPS tools applied to the method 
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which is further described in the discussion,    is the window area 

and    is the frame ratio,      is the diffuse contribution calculated 

to: 70W for the particular site.      is estimated as an average 

fraction of horizontal diffuse radiation, Dh with the function; 

                        (9) 

 

where   is the inclination angle of 90°. 

The solar gains evaluation is defined as annual simplified solar beam 
component simulation. To speed up the calculation process the 

annual hourly sun vectors are reduced from 8760 to 103 vectors, 

while the irradiance effect,    per unique sun vector,   is maintained 
in every vector group. As a consequence, each original placed vector 

is repositioned slightly on the hemisphere (see Figure 1). While this 

will affect the angle of incidence,   , the precision of the calculations 
are only slightly biased in the process, more on this subject is found 

in the discussion. If unobstructed each irradiance factor with the new 

angle of incidence for each window are calculated. However most 
sun vectors are obstructed by the building geometry which means 

most sun vectors are omitted from the calculation, this again makes 

calculations run significantly faster. The obstruction calculation is 
processed by an isovist1 [34] function. 

The transmission losses/gains,     for each zone k in the each 

calculation step   are extracted as; 

     

                               

  

   

     
      

     
      

  

              

(10) 

 

where        is the area and        is the U-value of the window 

(inclusive frame),         and         is the area and U-value of the 

opaque part of the façade.              and             is the length 

and transmission factor of the connection between wall and window. 

The cooling set point temperature        is assumed     , infiltration 

is ignored and    is the external temperature at calculation step  . 

The ventilation loss/gains,     for each zone k in the each calculation 

step   are extracted as; 

                               

  

   

                  (11) 

 

where           is the heat capacity of air volume set to 

            ,       is the dimensionless temperature adjustment 

factor representing the heat recovery rate.           is the maximum 

airflow expressed in m3/s. The air supply temperature           is 

assumed to be      and    is the external temperature at calculation 

step  . Please notice that the part of the cooling capacity related to 

cooling outside air to      is not accounted for in the minimization 
function seen in equation 15. 

3.2 Choice of optimization method 

During the past decade, design optimization using performance 
simulation has been associated with stochastic methods such as 

Simulated Annealing e.g. [35] and Genetic Algorithms e.g. [36] and 
Gradient-based methods e.g. [37]. Many methods applies to design 

problems for optimizing thermal and lighting performance, based on 

building enclosure, HVAC design, and control schedules, as 
mentioned in [18,38,39]. As Wetter [13] explains there are several 

challenges in using BPS tools in combination with stochastic 

optimization algorithms. Stochastic optimization algorithms are 
computationally efficient (over their deterministic counterpart), but 

they often require the cost function to be differentiable in the design 

                                                                        
1 Isovist is defined as an object that can be seen from a given point in space 

parameters. And since many BPS solvers approximate solutions due 
to adaptive variations in solver iterations [18], the solvers form 

discontinuous search spaces, which are often difficult for stochastic 

optimization algorithms to handle. Beside the careful choice of an 
optimization algorithm, the way the optimization algorithms maintain 

support of feedback process among different professions in the 

design team during design iterations are of great importance [7]. To 
support the early design stage, the method need to facilitate quick 

generation of integrated solutions and shorten synthesis analysis 

evaluation cycles as described by Struck [2]. In the same time, the 
method should allow interaction with the most suitable design 

alternatives, as well as assists rather than automate design.  

As the method relies on an integrated dynamic model [8], it enables 

exploration of different design options by adding visual scripting 
options. When used in combination with a multi-objective 

optimization algorithm, multiple designs can be generated and 

evaluated automatically within the set parameter constraints, with 
high scoring designs identified and stored [40].  

Many (multi objective) methods e.g. [23,36,39,41–43] utilize a 

variation of a Pareto2 Ranking of the objectives. Often this does not 

in self ensure interaction with the most suitable design alternatives, 
however the ranking method allow an easy way to identify a set of 

feasible designs that are equal-rank optimal. Arguably optimization 

of multivariate problems like building design, competing criteria are 
un-evenly balanced, and their relative importance is generally not 

definable. Therefore, the use of non-dominated ranking methods, 

help the design team to navigate in the infinite space of solutions 
[44].  

A recent implementation, Octopus [45] of the SPEA2 [46] algorithm 

is both user friendly and flexible enough to integrate into most design 

optimization processes. Octopus/SPEA2 has been used in the 
application seen in section 5. 

 

Figure 1 Annual solar sky component generated from the usage 

profile of a typical office [8-17]. The reduced vector field can be 

seen in the bottom picture.   

                                                                        
2 Vilfredo Pareto (1848–1923) developed the concept known as „Pareto 

optimality‟, which is defined by its “equilibrium of positions, from which it is 

not possible to move so as to increase the utility of some entity without 

decreasing the utility of another entity.” [44]  
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4. Case study – application of the method 

4.1 Problem definition and constraint functions 

This case study is based on an undisclosed project between the 

architects BIG and the consultant agency Grontmij. The case is used 

to present the application of the method in real life design problems 
where architectural qualities may supersede other objectives.  

From the very beginning the design team sought to avoid external 

solar shadings as solar shadings were found to be expensive, difficult 

to maintain and difficult to incorporate in the architectural design. 
The design team argued that most, if not all, external solar shading 

systems could be avoided by carefully designing a self-shading 

(folded) façade (see Figure 2). 

 

Figure 2 Folded facade concept. The amplitude of the facade 

folds marked by the variable varamp,1-3 create self-shading 

mechanisms on the neighboring facade unit. 

By removing the external shading system as a viable design option, 

concerns of thermal indoor environment, building energy 
consumption and daylight distributions became a central part of the 

discussion. Four questions arose with the folded façade concept: 

1. How much folding3 is needed to avoid overheating? 

2. Does increasing amplitude of folds, varamp (see Figure 2) decrease 

the energy consumption? 

3. If so does it pay off to use more expensive high performing glazing 

types4? 

4. How does the folding affect the daylight distributions in the 

offices? 

To answer these questions, it was decided to make use of a 

multivariate optimization method to explore the many solutions 

where folding could influence the energy consumption, the daylight 

distributions and indoor thermal environment while considering the 
cost of the window systems.  

It was decided to use a whole building evaluation process of energy, 

cost, daylight and thermal indoor environment as the architects 

wanted to control a continuous and changing façade around the 
building. Using simple representatives of rooms (e.g. by simulating 

variations of rooms) was found to be unfitted for this process as the 

small and continually connected variations on the façade would 
create too many possible combinations and thus too many 

simulations. What was needed was a very fast whole building 

simulation that could (to an acceptable level of precision) present the 
whole building energy consumption, the price of the façade, the 

amount of daylight in every room and estimate the risk of thermal 

overheating problems inside the building. To do this, the building 

                                                                        
3 amount of folding is determined by adjusting amplitude varamp and window 

size varpl (see Figure 3) and varblend (see Figure 4) 

 
4 high performing glazing types: window panes with reduced convection and 

radiation heat losses (low U-values) and/ or reduced solar heat gain coefficients 

(low g-values) 

needed to be divided into thermal zones and simulating each zone 
would be necessary, however at this point in the design process room 

placements were not fixed which meant any zone division were very 

dubious and would affect the simulations significantly. It was for this 
reason decided to use proxy zones instead of actual room geometry. 

The proxy zone as seen in Figure 3 is defined by a volume extruded 

into the building in a fixed depth (here 5m) from the façade where 

the window    or    is positioned.         

 

Figure 3 Plan view of a proxy zone represented as a dashed line. 

The variables are used to constrain the optimization process 

As mentioned before, the architects valued a continuous façade, 

where one fold were mostly similar to the neighboring folds, which 

meant only subtle changes from façade fold to the next was allowed. 
In terms of optimization, this is a complex type of dynamic 

constraint. However, the implementation of this type of constraint 

functions is straight forward when VPL‟s are present in the model 
environment. The design team‟s solution is a scripted function that 

utilizes the hyper parameters varamp(1-3), varpl(1-3), varblend  to control the 

folding. Where varamp(1-3) controls the amplitude in on the three 
facades. varpl(1-3) controls the vertical placement of the fold on each 

façade and varblend adjust the “blending effect”, that intermix the 

folding between facades. Figure 4 shows variations of the hyper 
parameters for example varpl shifts the fold clockwise with small 

values and varamp(3) controls the north eastern façade. 

 

Figure 4 Plan views of a small building example to explain the 

changes in design variables. 1. shows variations over varamp. 2. 

shows variations over varpl. 3. shows variations over varblend 
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By defining these geometrical constraints, the idea was to explore the 

many different “optimal” solutions that were provided from the 

optimization process. The different solution showed in Figure 4 does 

not represent any architectural preferred strategy, but shows the 

impact of the design variables.  

4.2 Objective functions 

Four objective functions           ,         ,              ,  

            are minimized by the multivariate optimization algorithm 
SPEA2 [45,46].  

The building energy use;            is a function of the annual 

simulated heating         , cooling         , ventilation       and 

lighting        :  

   
       

             

                                              

  

   

 
(12) 

 

where   is the load condition of the particular condition,    and is the 

number of load conditions.            is simulated by Be10 [12] 

through the Termite [31] interface. The primary energy factor, 

   = 2.5 is multiplied with electrical energy uses according to the 

Danish building regulations [47].  

The capital cost of the façade is a function of the cost of the 
transparent parts of the façade: Cost index shown in Table 2 is 

generated for this article and should not be used in general. Seven 

different window types were considered each evaluated by their cost 

index and amount of glazed areas in the particular solution,  : 

   
       

                   

  

   

        (13) 

 

where k is the proxy zone and    is the number of proxy zones in the 

building,      is the window area in the k‟th proxy zone and   is the 

cost index see Table 2. The constants 10 and 50 are unitless and 
added to normalize the relative objectives seen in Figure 6 and 7.  

The daylight evaluation              is defined by the CIE uniform 

sky simulation of a point in the center of the proxy zone, 0.85m from 

the floor. A penalty function            (also shown in Figure 
5) based on the Gauss error function, ERF [48] is used to reduce the 

importance of very high daylight factors and increase the penalty of 
DF < 3% (the penalty function related to daylight factors can be seen 

in Figure 5): 

   
       

                               

  

   

   (14) 

 

where k is the proxy zone and    is the number of proxy zones in the 

building.        ) is defined by           
 

  
    

 
  

   

 
.     

is simulated by Radiance for every solution,  . 

The objective function of the thermal requirements is defined as:   

In each calculation step   evaluate:  

if                                    is True 

increment overheating hour   

   
       

                     

  

   

 

  

   

   

(15) 

 

where k is the proxy zone and    is the number of proxy zones in the 

building,                                 is explained in eq. 

(5).        
      

      
 represents the maximum cooling capacity at any 

hour in the year, set to 40 W/m2.        is the area of the proxy zone.  

 

Figure 5 Penalty functions used to limit the influence of very high 

daylight factors and avoid low daylight factors. Penalty factor, 

ERF-3 is used in the case study. 

5. Results 

The multivariate optimization procedure was performed at dual-core 

laptop over a period of 3 days. A population size of 300 ran through 

32 generations of SPEA2 [46] trials, which turned out to be sufficient 
for convergence. In average every simulation/evaluation of the four 

criteria took less than 30 seconds. This is considered very fast when 

we are talking whole building simulations on regular PCs.  

In Figure 6 all the most promising solutions are showed. The green 
colored boxes represents the solutions with minimum amount of 

thermal loads (hours above the maximum cooling capacity see eq. 

15) in the 32nd generation of simulations. The red colored boxes are 
the worst performing solutions in terms of thermal loads. The grey 

boxes are the Pareto solutions in generation 1-31. From the figure it 

can be seen that several cluster developments occur in boomerang-
like fields around the shared minimum (0, 0, 0, 0).  

 

 
Figure 6 Four dimensional solution space: Energy, Cost, 

ERF(Daylight) and Thermal load. Sub-optimal solutions are 

shown in grey colors. Dashed lines encapsulate the solutions 

associated with individual window-types. Please see Figure 5 for 

the explanation of ERF and Figure 7 for the explanation of size 

and color of solutions. 
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Each field seen in Figure 6 is a separate solution space for the 
window types (seen in Table 2). It can be concluded that anyone of 

the seven window types can be used in the building, however type 2 

is in general least costly (in terms of capital costs) and type 5 is the 
most expensive of the seven window types. This is interesting as the 

cost-distribution do not follow the cost-index shown in Table 2. 

 

Figure 8 Tradeoff between energy and cost plotted with sized 

points representing thermal loads. 1st generation Pareto front of 

solutions are shown with a grey line and the 32nd generation 

Pareto front are shown with a black line 

When looking more specifically into the Pareto solutions (see Figure 

7) of the final generation a wide range of folded façade compositions 

can be seen. From the figure it can be seen that every one of the 
selected solutions, except of solution 3, has windows on the right 

side (seen clockwise from the top) of the folded façade. All solutions, 

but solution 1 tend to open up with more glazing towards north east 
and close itself towards south east. 

 

Only solution 5 seems to have a complete uniform façade around the 
building, all the other solutions have individual façade compositions 

for the three orientations. Solution 3 ranks highest in terms of 

daylight (1.1), but worst in terms of thermal loads (234.3).  

This also correlates to the usual assumptions of the reversed 
performance relationship between daylight conditions and a stable 

thermal environment. Solution 1 performs best in terms of energy 

performance (154.3) while solution 6 is performing worst in terms of 
energy (164.9).   

When it comes to cost-benefit analysis of the seven selected solutions 

the capital cost versus running costs (building energy consumption)  

is a popular way to choose a particular balanced solution. From 
Figure 8 the tradeoff between cost (of windows) and cost of annual 

building energy use is seen. The seven solutions are spread out in the 

solution space, however solution 5 is performing significantly better 
in terms of the cost-tradeoff than the others.  

It is up to the design team to choose which overall tradeoff-strategy 

that suits the design better. The seven choices of solutions shows that 

a very diverse façade composition with a large amount of folds may 
be optimal if daylight and thermal environment is valued high, but in 

terms of capital-cost and annual energy costs a uniform and almost 

flat façade composition is better performing. 

  

Table 2 Window type properties. *Cost index is created for this case study and do not signify real costs. 

 

Figure 7 The plot in the middle shows axes of a Cartesian space (x, y, z), where x is energy [kWh/m2 year], y is Cost [-] based on the cost 

function of windows and z is ERF(Daylight), which represents the penalized function of Daylight factors ERF(DF%). The box size and color 

describe the amount of hours [h] above the maximum cooling capacity. The plan view of 7 selected solutions are shown in the solution space, 

daylight factors in each zone are plotted as a grey scale hatch. The table in bottom shows details on the objectives for the selected solutions   
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6. Discussion and future research 

This article considers a wide range of problems when BPS tools are 

used to optimize buildings in the early design stages. One is the 
actual use of optimization methods in early design stages, which 

clearly has its limitations, as machine automation is very difficult to 

combine with quality-defined objectives. Souza et al. [49] warned 
that the distance between those that simulate and those that design 

may be one of the largest problems when using optimization methods 

in early design stages: Setting up criteria to evaluate performance 
and relate these criteria directly to design actions is a 

methodological problem independent of the simulation tool being 

used. It requires simulationists to fully understand the way designers 
think, i.e. essentially exploring interactions of all parameters 

together and dealing with all the variables at the same time. [49] 

To a great extent, this can be solved by utilizing an integrated 

dynamic model where both the simulationists and the designers work 
in a fully coupled environment [50]. In our case, the design team that 

consists of designers and simulationists were able to develop an 
integrated dynamic model that took both qualitative and performance 

based criteria into account. This evidently leverages some of the 

quality assurances mentioned by Hensen [4], such as using 
appropriate levels of model resolution for the early design stage and 

requirement for sufficient domain knowledge by the users. However, 

in terms of the use HQSS to estimate thermal loads, it was performed 
through a non-validated software tool. Therefore we will provide 

further details of the method here in the discussion. 

The model itself were part of the design process that contributed in 

the decision making of how to design the façade, therefore we do not 
consider the optimization method as a definite form finding process 

but more as mean to extract valuable information from an open 

ended design problem. The facilitation of performance feedbacks of 
individual design solutions between the parties in the design team 

was at no point an issue since the model were operated by both the 

simulationists and the designers. In relation to facilitation speed and 
the method‟s ability to shorten synthesis analysis evaluation cycles, 

as noted by Mora et al. [6] and Struck et al. [7] , the integrated 

dynamic model was able to generate a new result in less than 30 
seconds on a fairly modest two-core laptop. The flexibility of the 

integrated dynamic model meant that the objectives and constraints 

of the optimization could be adjusted to fit the design process and not 
the other way around. Even though much of process of generating 

solutions was part of automation processes, the actual value of the 

method is found in the consequence feedback. Or put in another way 
the value is found in the facilitation of the design rather than in the 

automation of the design.   

The BPS tools used by the model are integrated and fast, but it comes 

with a cost of validity and precision. The annual energy simulations 
based on Be10 are merely presenting a trend in energy consumption 

when the geometry in the model is changed in marginal steps. Of this 

reason small façade changes will not affect the energy use 
significantly. The dynamic effects of building use e.g. pulling down 

curtains when the sun creates glaring effects in offices, is not taken 
into account. And many similar dynamic effects, which are not 

considered, may result in inaccurate daylight and energy evaluations.  

The thermal indoor environment is estimated from hourly heat 

balance equations, which ignores thermal accumulation. This 
assumption is the single most significant source of errors in the 

model. To counter this in future implementations, thermal capacities 

and dynamic effects need to be considered. Furthermore HQSS 

assume constant internal loads (apart from light         ). In reality 

internal loads these will vary much during the service hours, 

particularly the occupancy. Therefore, we see further improvements 

in load profiling and incorporation of dynamic occupancy loads.  
However, these improvements must be implemented in a way that 

has little effect on the calculation intensity to maintain short 

evaluation cycles. 

The reduced number of calculations per zone is primarily due to the 
reduced number of solar vector calculations as shown in Figure 1. 

 

Figure 9 Absolute beam component deviations between Energy+ 

and HQSS in % when altering the critical sky subdivisions. Sky 

subdivision used in this article is marked in the plot.  

The consequence of altering the solar vector angles is showed in 
Figure 9 where the number of “critical” sky subdivisions is compared 

to Energy+. As seen from the figure some of the subdivisions are 

more likely to be similar to the Energy+-results and 103 subdivisions 
induce a fairly modest deviation of 6.8% compared to Energy+. To 

further reduce deviation from Energy+ an adjustment factor,   is 
implemented. The factor is numerically fitted to several Energy+ 

simulations (with varying window properties seen in Table 2). The 

comparison of simulations were performed on a sphere with a high 
angle division which means that comparisons is considered from 

beam component contribution from the entire hemisphere (one 

example is shown in Figure 10). The particular site, weather data, 
window types and usage profile have resulted in an average 

adjustment factor,   of 0.89. It can be seen from Figure 10 that 
HQSS deviations from Energy+ are varying over the orientation and 

inclination with a bias towards east around the vertical inclination 

Figure 10 Beam component deviations between Energy+ and QHSS measured in Watts plotted against inclination and orientation of a surface. 
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angle. The absolute mean deviation between HQSS and Energy+ is 

2.3% when adjustment factor,   of 0.89 is included.  

The diffuse sky contribution has been calculated by assuming 

average isotropic radiation from the whole sky dome, as it follows 

(from eq. 9). Thus assuming that      only relies on the window tilt 

of the angle   that receives a proportional part of   . However, 
diffuse radiation is not uniformly spread across the sky. For instance, 

the area just around the sun (circumsolar) is considerably brighter 

than the rest of the sky. A commonly used method to model this is 
the Perez model [51]. To further improve the precision of the HQSS 

future implementation should consider the dynamics of diffuse 

lighting component. HQSS or similar quasi-steady-state methods 
should be used with care if actual overheating hours, as demonstrated 

here, is needed for authenticating purposes. However, for early 

design stage indications, these tools are found to be sufficient in 

terms of detail and precision. Nevertheless, more research on this 

topic is necessary.  

7. Conclusions  

As demonstrated, multivariate optimization combined with 

simplified building performance tools leads to the finding of optimal 
solutions in reasonable computational time. It is clear that an 

integration of optimization algorithms can drastically change the 

usage of time within architectural design processes, allowing 
designers to focus their attention on taking informed design 

decisions. It is concluded, that quasi-steady-state methods 

implemented as part of integrated dynamic models are fast and 
flexible enough to support building energy-, indoor environment- and 

cost-optimization the early design stages. Additionally these types of 

models showed potential to integrate various types of architectural 
constraints in the optimization process, thereby integrating the 

domains of the building designer and the simulationist through a 

common platform. 

For the particular application of the method, it is concluded that a 
wide variety of solutions may be feasible. In terms of how much a 

façade should fold, the choice of window type and window size is the 

determining factors.  

As a final note on validity and precision on the demonstrated method, 
the use of an hourly quasi-steady-state method for estimating thermal 

problems should only be used in determining the direction of design, 

rather than the final design. The same is concluded with the use of a 
monthly quasi-steady-state method for estimating whole building 

energy use. The estimations of daylight conditions and capital cost of 

the façade is found valid even in later design stages. When it comes 
to using the combined evaluations with stochastic optimization 

algorithms (like the SPEA2 algorithm demonstrated), it can be 

concluded the level of precision is sufficient for the initial design 
approach, but more precise evaluation methods are needed in later 

stages when more detailed design options has been settled. 
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