289 research outputs found

    Framing Middle Eastern Ethnic Minorities in the U.S. Press

    Get PDF
    The main purpose of this study is to map out how leading newspapers in the U.S. are framing different ethnic groups in the Middle East in their daily reporting. For this analysis, a systematic random sample was drawn from published articles focused on two main ethnic groups in the Arab region, namely, Amazigh Berbers and Copts. There are 391 news stories in The New York Times and 408 news stories in Washington Post about Berbers and Copts during the last eight years (2011-2019). The study came out with the findings that American newspapers dedicated large spaces to cover the issues of minorities in the Middle East, and there was a greater tendency in the newspapers to cover Coptic minority compared to the Berber minority. The study newspapers heavily relied on minorities sources, both NYT and WP relied on 61% Coptic sources and 67% on Berbers sources. However, the data showed that Arabic sources were the least cited in stories published about minorities in the Middle East (6% in both NYT and WP). Different frames were used by NYT and WP, while NYT focused more on presenting Copts issues through international frames, WP tends to present Berbers through the cultural frame

    Identity-based threshold group signature scheme based on multiple hard number theoretic problems

    Get PDF
    We introduce in this paper a new identity-based threshold signature (IBTHS) technique, which is based on a pair of intractable problems, residuosity and discrete logarithm. This technique relies on two difficult problems and offers an improved level of security relative to an individual hard problem. The majority of the denoted IBTHS techniques are established on an individual difficult problem. Despite the fact that these methods are secure, however, a prospective solution of this sole problem by an adversary will enable him/her to recover the entire private data together with secret keys and configuration values of the associated scheme. Our technique is immune to the four most familiar attack types in relation to the signature schemes. Enhanced performance of our proposed technique is verified in terms of minimum cost of computations required by both of the signing algorithm and the verifying algorithm in addition to immunity to attacks

    ON THE APPLICATIONS OF INTERACTIVE THEOREM PROVING IN COMPUTATIONAL SCIENCES AND ENGINEERING

    Get PDF
    Interactive Theorem Proving (ITP) is one of the most rigorous methods used in formal verification of computing systems. While ITP provides a high level of confidence in the correctness of the system under verification, it suffers from a steep learning curve and the laborious nature of interaction with a theorem prover. As such, it is desirable to investigate whether ITP can be used in unexplored (but high-impact) domains where other verification methods fail to deliver. To this end, the focus of this dissertation is on two important domains, namely design of parameterized self-stabilizing systems, and mechanical verification of numerical approximations for Riemann integration. Self-stabilization is an important property of distributed systems that enables recovery from any system configuration/state. There are important applications for self-stabilization in network protocols, game theory, socioeconomic systems, multi-agent systems and robust data structures. Most existing techniques for the design of self-stabilization rely on a ‘manual design and after-the-fact verification’ method. In a paradigm shift, we present a novel hybrid method of ‘synthesize in small scale and generalize’ where we combine the power of a finite-state synthesizer with theorem proving. We have used our method for the design of network protocols that are self-stabilizing irrespective of the number of network nodes (i.e., parameterized protocols). The second domain of application of ITP that we are investigating concentrates on formal verification of the numerical propositions of Riemann integral in formal proofs. This is a high-impact problem as Riemann Integral is considered one of the most indispensable tools of modern calculus. That has significant applications in the development of mission-critical systems in many Engineering fields that require rigorous computations such as aeronautics, space mechanics, and electrodynamics. Our contribution to this problem is three fold: first, we formally specify and verify the fundamental Riemann Integral inclusion theorem in interval arithmetic; second, we propose a general method to verify numerical propositions on Riemann Integral for a large class of integrable functions; third, we develop a set of practical automatic proof strategies based on formally verified theorems. The contributions of Part II have become part of the ultra-reliable NASA PVS standard library

    Mechanisms Involved In The Biological Control Of Tomato Bacterial Wilt Caused By Ralstonia Solanacearum Using Arbuscular Mycorrhizal Fungi

    Get PDF
    Glasshouse experiment was done to study the ability of two local mycorrhizal fungi species (Glomus mosseae, Scutellospora sp.,) and introduced species (Gigaspora margarita) to colonize and enhance some tomato growth parameters. G. mosseae showed the best preformance among species used. G. mosseae was able to increase significantly plant height (60% ), shoot dry weight (135%) and flowers number (58%) compared to the control plant at the 7th weeks of plant growth. G. mosseae alter root structures such as root dry weight (42%), root tips (120%), root length(83%), root surface area (106%), and root volume (59%), which can increase nutrient absorption and enhance plant growth. G. mosseae was adapted to the local environmental conditions which resulted in more root colonization (300%) and more spores number (300%), different from the introduced species G. margarita. The overall data presented in this study showed that local species can be used for enhancing yield growth more than the introduced species. Three mechanisms were described to explain by how arbuscular mycorrhizal fungi (AMF) inhibit or control the bacterial wilt disease. Nutrient uptake, biochemical changes and root morphological changes were the mechanisms studied. The concentrations of N (41%), P (133%), K (49%), Fe (44%), and Zn (33%) in tomato shoots were increased after the colonization of G. mosseae, indicating that AMF was able to increase the shoot nutrient uptake due to the hyphal net were produced by AMF which allow the roots to absorb more nutrient. The root morphological characteristics (root dry weight, root tips, root volumes, root length and root surface area) were changed significantly in G. mosseae treatment compared to all other treatments. The SEM and TEM images provided evidence that AMF can modify the root cortex cells and root structure which finally helps the plant to prevent the disease infection totally. The G. mosseae hyphal structures were seen inside the cortex cell. Disease symptoms were not seen in the G. mosseae +R. solanacearum treated plants. The extensive colonization by AMF was the reason behind the high concentration of chlorophyll (a) and chlorophyll (b) which could contribute to the increase of photosynthetic rate in tomato leaves and enhance plant growth. Ch.(a) and ch.(b) in G. mosseae treated plants was significantly higher compared to the rest of the treatments. G. mosseae can be used as a bio-protection agent because it can provide root with hyphal net which can minimize the bacterial wilt infection. The production of healthy, huge number and clean G. mosseae spores were the targets of another glasshouse experiment. The results obtained from this experiment showed that the harvest date and the type of the crops were played a critical role in AMF spore production. Corn was the most suitable host for G. mosseae sporulation (167 spore/10gm soil). Lentil, green bean, and barley showed low AMF sporulation and colonization related to the inability of these crops to grow under glasshouse conditions. Several important factors must be considered in AMF mass production, included plant host species, environmental conditions, soil types, nutrient regime, pot size, inoculum amount and the source of primary inoculum. In vitro experiments were done to study the effects of different root exudates with and without pre-inoculation with G. mosseae on the control of R. solanacearum and to study the indirect interaction between G. mosseae and R. solanacearum. In general, the influence of root exudates produced from tomato and corn plants on G. mosseae spore germination showed different response. The spores germination number was decreased using different volumes of mycorrhizal tomato root exudates (MTRE) and mycorrhizal corn root exudates (MCRE). It was increased when non-mycorrhizal tomato root exudates (NMTRE) and non-mycorrhizal corn root exudates (NMCRE) were applied in different volumes. G. mosseae spores germinated in all types of media used. The spore germination number was increased by increasing the original number of spores cultured and this indicated that the volatiles compounds produced from bacterial pathogen did not inhibit the spore's germination. The overall results concluded from these studies confirm that the local species of AMF were more able to support and enhance plant growth compared to the introduced species. G. mosseae was able to control totally the bacterial wilt causal agent R. solanacearum under glasshouse conditions. Nutrient uptake, biochemical changes and root morphological changes were the three mechanism tested. The production of huge number of AMF spores is a critical area for mycorrhizal research using suitable host plant as a trap

    Rational Cubic Ball Interpolants For Shape Preserving Curves And Surfaces

    Get PDF
    Interpolan pengekalan bentuk adalah satu teknik rekabentuk lengkung/ permukaan yang sangat penting dalam CAD/-CAM dan rekabentuk geometric Shape preserving interpolation is an essential curve/surface design technique in CAD/CAM and geometric desig

    The Impact of Governmental Price Policy on the Economic Returns of the Barley Crop Farmers in Jordan

    Get PDF
    The objective of this study was to analyze the impact of governmental price policy on barley production in Amman governarate, Jordan. Using a quantitative mathematical analysis method; policy analysis matrix (PAM) approach. In this study, primary data were collected by personal interviews to farmers in the target area while secondary data were collected from different resources. According to the Policy Analysis Matrix (PAM) approach, results showed that the values of the nominal protection (NPC) and effective protection coefficients (EPC) for barley 1.79 , 3.94 respectively. Thus, a clear government intervention was observed;.there was a subsidy for agricultural producer . Keywords: Barley, Price Policy, Nominal Protection Coefficient, Effective Protection Coefficient
    corecore