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Abstract

Regression testing is the process of retesting a system after it or its environment has changed. Many techniques aim to
find the cheapest subset of the regression test suite that achieves full coverage. More recently, it has been observed that
the tester might want to have a range of solutions providing different trade-offs between cost and one or more forms of
coverage, this being a multi-objective optimisation problem. This paper further develops the multi-objective agenda
by adapting a decomposition-based multi-objective evolutionary algorithm (MOEA/D). Experiments evaluated four
approaches: a classic greedy algorithm; non-dominated sorting genetic algorithm II (NSGA-II); MOEA/D with a fixed
value for a parameter c; and MOEA/D in which tuning was used to choose the value of c. These used six programs
from the SIR repository and one larger program, VoidAuth. In all of the experiments MOEA/D with tuning was the
most effective technique. The relative performance of the other techniques varied, although MOEA/D with fixed c
outperformed NSGA-II on the larger programs (Space and VoidAuth).
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1. Introduction

Software testing is one of the main verification and
validation methods used in software development. Re-
gression testing occurs whenever the system under test
(SUT) or its environment changes, with the regression
testing process involving the SUT being tested with
the current test suite T or some subset of this (possi-
bly with additional test cases for new code). Although
there are many tools that reduce the cost of regres-
sion testing by re-applying the test suite T , regression
testing can be a time consuming and expensive pro-
cess. This is the case if the test suite is large, there is
some manual element in testing, or test execution takes
up significant resources. It has been found that there
are situations in which regression testing takes weeks
to run [7]. In addition, many systems are now devel-
oped in a continuous manner, with builds being fre-
quently tested, and in such situations the time taken
by regression testing can be a significant issue. There
has thus been considerable interest in methods that re-
duce the cost of regression testing (see, for example,
[1, 2, 3, 7, 10, 11, 13, 17, 29, 32, 33, 37, 41]). A good
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overview of this work can be found in a recent survey
[42].

A natural approach, to reducing the cost of regres-
sion testing, is to select a subset T ′ of the test suite T ,
with methods that do this being called test suite min-
imisation methods [42]. The aim of such methods is
to choose an effective but small subset and many ap-
proaches have been devised [1, 2, 3, 10, 11, 13, 17, 41].
In the absence of fault information, it is normal to use
some form of coverage as a proxy for effectiveness. For
example, we might want a small subset T ′ where the
percentage of statements executed in testing (statement
coverage) is high. The problem is then usually seen as
either maximising coverage for a given test budget or
minimising cost for a given coverage, with initial work
on this topic devising greedy algorithms (see, for exam-
ple, [2, 3, 11]).

The previously mentioned approaches fix one prop-
erty (cost or coverage) and then aim to optimise the
other property. It has been observed that instead we
might treat this problem as a multi-objective optimi-
sation problem: we attempt to optimise two or more
properties (such as cost and coverage) at the same time
[10]. In multi-objective optimisation it is normal to
place a partial order on solutions by saying that solution
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x Pareto dominates solution y if x is superior to y for
at least one objective and is at least as good as y for all
objectives. For a given problem, the Pareto set is the set
of solutions that are not Pareto dominated. This Pareto
set provides a range of trade-offs between the properties
optimised: the tester can then choose from these solu-
tions. While typically it is not feasible to produce the
Pareto set for a problem, optimisation algorithms might
return an approximation to the Pareto set. Yoo and Har-
man implemented a multi-objective approach, applying
a greedy algorithm and two versions of non-dominated
sorting genetic algorithm II (NSGA-II) [41]. The ap-
proaches were evaluated on Space and four programs
from the Siemens suite. Interestingly, while the versions
of NSGA-II outperformed the greedy algorithm on the
programs from the Siemens suite, the greedy approach
was superior for Space [41]. Harman has also identified
many different factors that might be considered in the
test suite minimisation problem [10].

Yoo and Harman [41] appear to be the first re-
searchers to apply a multi-objective optimisation ap-
proach to the test suite minimisation problem. This was
an important step that led to valuable results and in-
sights, but the work (naturally) had a number of limita-
tions. One limitation was that while the multi-objective
evolutionary algorithm used (NSGA-II) is known to per-
form well on many problems, there is the potential to
apply more specialised approaches. In the evaluation,
the main approach used to compare algorithms oper-
ated as follows: take the union of the non-dominated
solutions produced by the algorithms, form a new set
P of non-dominated solutions from these, and for an
algorithm A determine how many of its solutions are
not Pareto dominated by solutions in P. The authors
also compared the sizes of the sets of non-dominated
solutions returned by the algorithms, arguing that an al-
gorithm that returns many solutions provides the tester
with more options. While this approach is sensible,
the evolutionary optimisation community has developed
other approaches. Finally, the authors considered two
and three objective problems.

In this paper we aim to significantly develop the
multi-objective agenda pioneered by Yoo and Har-
man in three major ways, with the following contri-
butions. Firstly a ‘modern’ evolutionary algorithm
decomposition-based multi-objective evolutionary al-
gorithm (MOEA/D) [43], not previously used, has been
utilised to overcome some of the limitations as stated
above. Secondly, the Hypervolume (HV) [49] of a solu-
tion has been used in the evaluation as it has a number of
important benefits and is widely used in comparing the
performance of multi-objective and many-objective al-

gorithms. Thirdly, we have extended a multi-objective
solution as proposed in Yoo and Harman’s paper to a
many-objective one as this would enable one to consider
the testing of other important types of software. It tran-
spired that it was necessary to adapt MOEA/D and in
doing so we introduced a parameter c used in the nor-
malisation. Some initial runs were performed and in
these a value of c = 0.3 was found to be reasonably
effective. This led to two versions of MOEA/D being
used in the experiments: one in which we used this fixed
value of c and one in which the value of c was chosen for
each experiment (‘variable c’). We also explored prob-
lems with two to four objectives; Yoo and Harman con-
sidered two and three objective problems. One might
expect the nature of the optimisation problem to change
as the number of objectives increases since, for exam-
ple, fewer pairs of solutions will be related (under the
relation that one dominates the other). In addition, our
seven experimental subjects included an additional real-
world program; one that implements a web-service.

Yoo and Harman considered two and three objective
problems, but we have chosen several combinations of
objectives in this paper. The most basic included two
objectives only (cost and statement coverage) and might
be seen as corresponding to the development of ‘nor-
mal’ software. The three objective case added in branch
coverage. Branch coverage is required in a number of
areas including automotive software (see, for example,
[39]). For four objectives we used cost, statement cov-
erage, branch coverage, and modified condition/deci-
sion coverage (required for safety critical components
in avionics software [34]) so this might be seen as cor-
responding to the testing of critical software. In this
way we have moved from a multi-objective optimisation
problem to a many-objective one, allowing the testing of
additional types of software.

In this paper, we compare four optimisation algo-
rithms: a greedy algorithm, NSGA-II, and MOEA/D
(with a fixed value of c or variable c). We used
five smaller experimental subjects plus Space from the
software-artifact infrastructure repository (SIR) and one
larger real world system, VoidAuth, that implements
the main processes of the Universal Payment Gate-
way (UPG) service. In all cases the experiments found
MOEA/D with variable c to be the most effective tech-
nique, with the differences being statistically signif-
icant. The relative performance of the other meth-
ods varied, although the greedy algorithm was worst
for the smaller SIR programs. Similar to Yoo and
Harman, we found that the greedy algorithm outper-
formed NSGA-II on Space but, interestingly, both vari-
ants of MOEA/D performed better than the greedy algo-
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rithm. For VoidAuth the greedy algorithm outperformed
NSGA-II for the two and three objective problems and
outperformed MOEA/D with fixed c for the three ob-
jective problem. The relative performance of NSGA-
II and MOEA/D with fixed c varied for the SIR pro-
grams, with neither being consistently better. However,
in all cases MOEA/D with fixed c outperformed NSGA-
II for VoidAuth. We also considered a specific scenario,
where the tester decides to use a test suite that provides
full coverage for every metric in the optimisation pro-
cess. In every experiment MOEA/D with variable c re-
turned the smallest test suite.

The paper is structured as follows. Section 2 pro-
vides an overview of previous work on test suite min-
imisation for software regression testing and Section 3
reviews approaches to evolutionary multi-objective op-
timisation. Section 4 explains how we used evolution-
ary multi-objective optimisation algorithms to address
the test suite minimisation problem. Section 5 explains
the experimental design and Section 6 analyses the re-
sults of the experiments. Section 7 explores threats to
validity and, finally, Section 8 draws conclusion and dis-
cusses possible lines of future work.

2. Related Work

The testing carried out during software development
is often divided into phases such as unit testing and sys-
tem testing. However, the delivery of a system does not
mark the end of testing: there is a need to re-test the sys-
tem whenever it is changed or its environment changes.
This process is called regression testing and typically
the original test suite T produced during development
is re-run, with this process often being automated. If
features are added or removed or the interface of the
SUT is changed then it may be necessary to fix test cases
from T , add new test cases, and remove those that are
no longer valid.

As previously noted, while it is often possible to au-
tomatically re-run a test suite T , this process can still be
expensive. The cost of regression testing has led to the
development of methods that increase the efficiency of
regression testing, either through prioritising test cases
(in the hope of finding any faults early in regression test-
ing) [7, 29, 33, 37] or by selecting some subset of the
regression test suite to use [1, 2, 3, 10, 11, 13, 17, 41].
In this section we focus on multi-objective approaches.
A recent survey provides an excellent general overview
of the work that aims to reduce the cost of regression
testing [42].

The aim of prioritisation techniques is to order (pri-
oritise) the test cases so that it is likely that faults are

found early in regression testing. This is motivated by
the desire to reduce the cost and time taken by regres-
sion testing: if faults are found in regression testing then
the earlier these are found the sooner they can be fixed,
potentially reducing the time to market.

A major issue when considering prioritisation is that
we do not know whether the SUT will pass the regres-
sion test suite T and, if it does not, which test cases will
lead to failure. Thus, we cannot know whether one or-
dering of the test cases is better than another. As a result,
the focus has been on the use of a proxy, with coverage
being the main proxy. This is based on the assumption
that a test suite that achieves coverage quickly is likely
to find faults earlier in testing. An alternative is to use
historical fault data, prioritising test cases that execute
parts of the code that have previously been found to be
faulty.

Early work on prioritisation used greedy algorithms.
Let us suppose, for example, that we are to prioritise
on the basis of statement coverage. Then the test cases
would be ranked on the basis of the number of program
statements, with this providing the ordering (see, for ex-
ample, [33]). Now let us suppose that we have three test
cases t1, t2, t3, test case t1 covers statements s1, s2, s4,
t2 covers s1, s3, and t3 covers s1, s2, s4. If we priori-
tise on statement coverage, as described above, then
we might choose either order t1, t3, t2 or order t3, t1, t2
and in both cases the second test case does not increase
the total coverage. If, instead, we choose an ordering
such as t1, t2, t3 then 100% statement coverage would be
achieved using just the first two test cases. The prob-
lem is that approaches such as that described above op-
timise on the total statement coverage of test cases, not
the additional coverage provided. This led to the de-
velopment of additional greedy algorithms in which, at
each stage in the process, we add the test case that max-
imally increases the total statement coverage [33]. Note
that although prioritisation techniques typically use the
source code, they have also been developed for binary
code [36].

The focus of this paper is on test suite minimisation,
in which we choose a subset of a regression test suite T ,
with the aim of reducing the cost of regression testing
and ideally not reducing its effectiveness. This differs
slightly from a third problem, called test case selection,
in which we also use information regarding the new ver-
sion of the SUT. Test case selection thus aims to test the
changed parts of the SUT and to minimise the costs of
doing so. More information about test case selection
can be found in the survey by Yoo and Harman [42].

Since we cannot know in advance the effectiveness
of a test suite, it is instead normal to describe test suite
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minimisation in terms of a set of test requirements [11].
The requirements discussed in the literature typically
correspond to coverage of parts of the SUT. For exam-
ple, if the SUT has statements s1, . . . , sn then we might
have n requirements r1, . . . , rn, where requirement ri is
that statement si is executed during testing. If we have
test suite T and set R of requirements that are satisfied
by T , we might then aim to find the smallest subset of
T that satisfies the requirements in R [11].

Given a test case t we can find the subset Rt of re-
quirements from R that are satisfied by t. The test suite
minimisation problem can then be seen as that of choos-
ing the smallest set of Rt that, between them, include all
elements of R. This is similar to the set cover prob-
lem, in which we have a set S , a set S ′ = {S 1, . . . , S k}

of subsets of S , and we wish to find the smallest set
S ′′ ⊆ S ′ whose union is S . It is not hard to show that
any instance of the set cover problem can be represented
as a test suite minimisation problem. Thus, since the
set cover problem is NP-hard [22], we know that the
test suite minimisation problem is NP-hard. This has
led to interest in the development of heuristics for the
test suite minimisation problem with much of the ini-
tial focus being on greedy algorithms [2, 3, 11]. It has
also been noted that sometimes the tester is interested
in two or more types of coverage. Jeffrey and Gupta
[17] approached this situation by applying a greedy al-
gorithm in which a test case is only deemed to be re-
dundant if it is redundant with respect to all of the types
of coverage. A number of authors have also represented
the test suite minimisation problem as an Integer Lin-
ear Programming problem [1, 13]. If there is only one
objective then the function being optimised is the cov-
erage of requirements. Where there are multiple objec-
tives, such as different types of coverage, a (possibly
weighted) sum is used.

The test suite minimisation problem has typically
been represented as that of finding the smallest (or
cheapest) subset of test suite T that satisfies all of the
requirements or that maximises some weighted sum of
scores. However, in practice the tester might be will-
ing to use a test suite that does not satisfy all of the re-
quirements if this test suite is sufficiently small. Thus,
it is natural to see the problem as a multi-objective op-
timisation problem. Yoo and Harman applied this ap-
proach, using two objectives (test execution cost and
statement coverage) and also three objectives (test exe-
cution cost; statement coverage; and fault history) [41].
This work used a greedy algorithm and two versions of
NSGA-II. The approaches were evaluated on part of the
Siemens suite of programs (printtokens, printtokens2,
schedule, schedule2) and Space and the results were

mixed, with the differences being relatively small. In
particular, while the variants of NSGA-II outperformed
the greedy algorithm on the programs from the Siemens
suite, the greedy approach was superior for the larger
program (Space) [41]. This aim of this paper is to
further develop the multi-objective agenda through us-
ing a more recently developed evolutionary algorithm
MOEA/D, using Hypervolume values in the evaluation,
and using a new real-world experimental subject.

3. Evolutionary Multi-Objective Optimisation

Multi-objective optimisation involves simultaneous
optimisation of two or more conflicting objectives. In
multi-objective optimisation problems (MOPs), there is
usually no single optimal solution but rather a set of
Pareto optimal solutions (called the Pareto set in the ob-
jective space). An MOP, without loss of generality, can
be defined as follows:

Minimise f (x) = ( f1(x), f2(x), ..., fm(x))
Subject to x ∈ Ω (1)

where x denotes a solution vector in the feasible solu-
tion space Ω, and fi (i = 1, 2, ...,m) is the ith objective
to be minimised.

The concept of optimality in multi-objective opti-
misation is defined by the Pareto dominance relation.
Given two decision vectors x and y, x is said to Pareto
dominate (or dominate) y (denoted x ≺ y), if and only
if x is at least as good as y in all objectives and better in
at least one objective. Accordingly, those decision vec-
tors that are not dominated by any other vector are de-
noted as Pareto optimal solutions. In general, the set of
Pareto optimal solutions in the decision space is called
the Pareto set, and the set of the corresponding objective
vectors the Pareto front. Unfortunately, it is often infea-
sible to obtain the whole Pareto set of an MOP, and we
only hope to find a good approximation to the set. Usu-
ally, we consider the non-dominated set of the obtained
solutions as the approximation.

An MOP with more than three objectives is often
called a many-objective optimisation problem [8, 16,
30]. Many-objective optimisation is an important but
challenging topic since the Pareto dominance-based cri-
terion generally loses its effectiveness in dealing with
this kind of problems. For the Pareto dominance crite-
rion, the portion of any two solutions being compara-
ble in the objective space decreases exponentially with
the increase of the number of objectives. This leads to
the appearance of new dominance criteria [23, 35, 40],
which loosen the dominance condition in comparing
two solutions.
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Evolutionary algorithms (EAs) are a class of stochas-
tic optimisation methods that simulate the process of
natural evolution. In recent years, there has been sig-
nificant interest in the use of EAs to solve MOPs, with
success of various EAs, such as genetic algorithms,
particle swarm optimisation, ant colony optimisation,
and artificial bee colony, in diverse application domains
[4, 18, 19, 20, 21, 25, 46]. There are two main advan-
tages of EAs in the context of MOPs (usually called
EMO algorithms). One is that they have low require-
ments on the problem characteristics, and the consid-
ered objectives can be easily added, removed, or mod-
ified. The other is that their population-based search
can achieve an approximation of the problem’s Pareto
front, with each solution representing a unique trade-off

amongst the objectives.
Over the past two decades, a number of effective

EMO algorithms have been proposed, such as the non-
dominated sorting genetic algorithm II (NSGA-II) [6],
strength Pareto evolutionary algorithm 2 (SPEA2) [48],
indicator-based evolutionary algorithm (IBEA) [47],
and decomposition-based multi-objective evolutionary
algorithm (MOEA/D) [43]. These algorithms, based
on their selection mechanism, can be divided into two
groups: Pareto-based algorithms and non-Pareto-based
algorithms.

As their name suggests, Pareto-based algorithms
compare individuals using the Pareto dominance rela-
tion, which reflects individuals’ behaviour in terms of
convergence. When Pareto dominance fails (e.g., the
individuals concerned are non-dominated with respect
to each other), these algorithms often introduce individ-
uals’ density information to distinguish between them,
serving the purpose of maintaining the diversity of the
evolutionary population. Many popular EMO algo-
rithms belong to this group. NSGA-II and SPEA2 are
two representative examples.

Recently, there has been increasing interest in the use
of EMO algorithms that do not consider Pareto domi-
nance as a selection criterion, with IBEA and MOEA/D
being important examples of such algorithms. The
former defines an optimisation goal with respect to a
specified performance indicator and uses this goal to
guide the search of the population; the latter decom-
poses an MOP into a number of scalar subproblems
and then optimises them with the aid of the informa-
tion from their neighbours. Non-Pareto-based algo-
rithms have been found to be promising in many chal-
lenging MOPs [24, 44], especially in a problem with
a high-dimensional objective space where the Pareto
dominance relation fails to provide sufficient selection
pressure towards the problem’s Pareto front [9, 16, 26].

We now explain how the test suite minimisation prob-
lem can be expressed as a multi-objective optimisation
problem to which the above approaches can be applied.

4. Regression Testing as a Multi-Objective Optimi-
sation problem

4.1. Introduction
Test suite minimisation techniques find one or more

subsets of the regression test suite T with the aim of
providing a good trade-off between the various objec-
tives. In this section we explain how we adapted three
algorithms to the multi-objective test suite minimisation
problem.

4.2. The objectives used
We chose several combinations of objectives (two,

three or four objectives). Since the primary aim of test
suite minimisation is to reduce the cost of regression
testing, all combinations included cost as an objective.
For cost we adopted the approach of Yoo and Harman
[42], which is to use a tool (Valgrind) to estimate the ex-
ecution time for a test case t and to use this time as the
cost of executing t; we say more about this in Section 5.

The three additional objectives all corresponded to
standard coverage metrics. The most basic of these was
statement coverage: the percentage of program state-
ments covered in testing. The two-objective case thus
used cost and statement coverage. The three-objective
case added in the branch coverage of the test suite: the
percentage of program branches executed in testing. Fi-
nally, the four-objective case used cost, statement cover-
age, branch coverage, and Modified Condition/Decision
Coverage (MC/DC) coverage. To satisfy the MC/DC
coverage criterion, all of the below must be achieved at
least once during testing.

1. Each decision takes on the values true and false
during testing.

2. Each condition in a decision takes on the values
true and false during testing.

3. Each entry and exit point is invoked.
4. Each condition in a decision is shown to indepen-

dently influence the outcome of the decision.

If a test suite has the fourth property then it must also
have the first two properties. In addition, all subject pro-
grams used in this work had only one entry and one exit.
As a result, it was sufficient to focus on the fourth prop-
erty, which we now explain in greater detail.

In a program a decision is a predicate whose evalu-
ation determines the next piece of code to be executed.
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Thus, for example, a while loop has a decision d and the
result of evaluating d determines whether the program
enters the body of the loop. A decision d in a program
may be composed of multiple conditions. For example,
the following has three conditions.

i f ( x>0 | | x>z ) && y>x t h e n

For a condition cond in a decision d to be shown to
independently influence the outcome of the decision we
require two tests that produce different outcomes for d
(one evaluates to true, the other to false) and where the
values of cond differs but all other conditions take the
same value. For the above example and the first condi-
tion x > 0 we might, for example, have two test cases
such as the following.

1. A test case t where d is executed when we have
that x = 10, y = 25, and z = 20. Here the decision
evaluates to true, the value of the first condition is
true, the value of the second condition is false, and
the value of the third condition is true.

2. A test case t′ where d is executed when we have
that x = 0, y = 5, and z = 2. Here the decision
evaluates to false, the value of the first condition
is false, the value of the second condition is false,
and the value of the third condition is true.

Between them, these satisfy the MC/DC require-
ments with regards to the first condition since the de-
cision takes different values but the values of the second
and third conditions do not change.

Statement coverage, branch coverage, and MC/DC
coverage are standard well-known coverage criteria.
Statement coverage is often seen as being a basic min-
imum, while branch coverage is mandated in a number
of areas, including automotive software (see, for exam-
ple, [39]). MC/DC coverage is often seen as being de-
sirable for safety-critical software and is mandated for
safety-critical avionics software [34]. The aim there-
fore was for these combinations of objectives to corre-
spond to different classes of software of varying criti-
cality, from ‘normal’ software (two objectives) through
to safety-critical software (four objectives).

It may be observed that these forms of coverage are
related under the subsumptions relation: if a test suite
achieves 100% MC/DC coverage then it is guaranteed
to achieve 100% branch coverage, and if a test suite
achieves 100% branch coverage then it is guaranteed to
achieve 100% statement coverage. However, the sub-
sumption relation concerns full coverage and so, for ex-
ample, if 1 ≤ x < 100 then x% branch coverage does not
imply x% statement coverage. To demonstrate this it is

sufficient to use a program p that starts with an if state-
ment with then case S 1 and else case S 2 and construct
S 1 so that it has many statement and no branches and
construct S 2 so that it has many branches and relatively
few statements. We can then produce a test suite T that
executes S 2 only, covering all but one of the branches
but missing many statements. Thus, these three forms
of coverage are competing despite being related under
subsumption.

In order to represent test suite minimisation in the
usual way (in terms of a set of requirements), for a cov-
erage metric such as statement coverage we needed a
set of items that have to be covered in testing. Once
we have such a representation, we can find the set of
requirements (items that need to be covered) that are
covered when using a test case ti. For statement cov-
erage, this set is simply the set of program statements
executed when testing with ti and for branch coverage
it is the set of branches. For MC/DC things are rather
more complicated, since we require a pair of test cases
to satisfy the fourth condition above and there is poten-
tial for there to be different ways in which we can show
a condition independently influencing the outcome of a
decision. However, we found a relatively straightfor-
ward way of overcoming this issue. Consider, first, the
case where we have a simple conjunction or disjunction
of two conditions A and B. Then we require the follow-
ing.

1. For conjunction (A&&B) we require one test case
where both A and B are true; one where A is true
and B is false; and one where A is false and B is
true.

2. For disjunction (A||B) we require one test case
where both are false; one where A is true and B
is false; and one where A is false and B is true.

For each of these cases we have three corresponding
test requirements.

We found that most decisions in our subject programs
either had only one condition or were in one of the
above forms. We were able to remove the few decisions
not of one of these forms by applying simple transfor-
mations. Let us suppose, for example, that we have a
decision of the form.

i f (A | | B) && (C | | D) t h e n

This would be rewritten to the following.

i f (A | | B) t h e n i f (C | | D)

Having applied such simple transformations, each
decision that is a conjunction (A&&B) or disjunction
(A||B) defines three requirements and each decision that

6



has only one condition defines two requirements (as
with branch coverage). For the experimental subjects,
10 decisions had to be rewritten for gzip while for the
other programs we required only one or two rewrites.

Let us suppose that we have test suite T = {t1, . . . , tn}
for program p and for a test case ti, 1 ≤ i ≤ n, we have
that: τ(ti) is the (estimated) execution time of ti; s(ti)
is the set of statements of p covered by ti; b(ti) is the
set of branches of p covered by ti; and m(ti) is the set
of MC/DC coverage items that are covered by ti. Then,
given T ′ ⊆ T , the four metrics used to drive optimisa-
tion were defined as follows.

1. Total execution time:
τ(T ′) =

∑
ti∈T ′

τ(ti) (2)

2. Total statement coverage:

s(T ′) =
| ∪ti∈T ′ s(ti)|
| ∪ti∈T s(ti)|

(3)

3. Total branch coverage:

b(T ′) =
| ∪ti∈T ′ b(ti)|
| ∪ti∈T b(ti)|

(4)

4. Total MC/DC coverage

m(T ′) =
| ∪ti∈T ′ m(ti)|
| ∪ti∈T m(ti)|

(5)

Naturally, we wish to minimise the first measure and
maximise the others.

4.3. Using a Greedy algorithm
It is straightforward to develop a greedy algorithm for

the two-objective problem. For example, if we wish
to find a subset of T that achieves the same statement
coverage as T then the greedy algorithm starts with the
empty set and at each iteration it adds the test case that
covers the most (so far uncovered) statements. The
algorithm terminates once the subset covers all of the
statements covered by T . We implemented a greedy al-
gorithm for the general case, using the approach of Yoo
and Harman [42], that operates as follows: at each it-
eration, if we have test suite T ′ then we choose the test
case ti that maximises the following: the sum, over the
coverage objectives being considered, of the improve-
ments in coverage, with this sum being divided by the
cost of executing ti. For example, for the three objective
case the greedy algorithm chooses the test case ti that
maximises the following.

(s(T ′ ∪ {ti}) − s(T ′)) + (b(T ′ ∪ {ti}) − b(T ′))
τ(ti)

(6)

The algorithm iterates until it obtains a test suite that
has the same coverage as T (for the forms of coverage
being considered).

4.4. Using NSGA-II

NSGA-II [6] is one of the most popular algorithms
in the EMO field. Its remarkable characteristics, such
as low computing complexity, independence of badly-
scaled problems, the usage of elitism, and parameter-
less search, make it well-suited to a significant number
of applications in real-world scenarios.

In order to guide the search in the evolutionary pro-
cess, NSGA-II introduces two effective selection cri-
teria: Pareto non-dominated sorting and crowding dis-
tance. The Pareto non-dominated sorting divides the in-
dividuals in a population into a number of fronts (ranks)
according to their Pareto dominance relation. For a pop-
ulation, rank 1 corresponds to the non-dominated in-
dividuals with respect to the whole individual set, and
rank 2 corresponds to the non-dominated individuals
with respect to the set formed by removing the rank-1
individuals, and so on. The crowding distance criterion
in the algorithm is used to estimate the density of indi-
viduals in a population. An individual’s crowding dis-
tance is defined as the distance of its two neighbours on
either side of the individual along each of the objectives.
NSGA-II then defines a partial order relation using the
two criteria, and prefers 1) individuals with lower rank
and 2) individuals with larger crowding distance when
they have the same rank.

It is possible to apply NSGA-II directly to our prob-
lems: it is sufficient to connect an implementation of
this algorithm with functions that compute the cost and
coverage scores of a test suite. There is no need for an
additional normalisation process since the Pareto domi-
nance relation is independent of the scaling of the objec-
tives and also the calculation of the crowding distance is
based on individuals’ objective value that is already nor-
malised according to the boundary of the current popu-
lation.

4.5. Using MOEA/D

As a representative algorithm developed recently,
MOEA/D [43] is based on conventional aggregation ap-
proaches from mathematical programming. MOEA/D
decomposes an MOP into a number of scalar optimisa-
tion subproblems and deals with them simultaneously.
Neighbourhood relations among these subproblems are
defined based on the Euclidean distance between their
aggregation weight vectors. When optimising a sub-
problem, the information from its neighbouring sub-
problems is adopted.

In MOEA/D, each subproblem keeps one individual
in its memory, which could be the best individual found
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so far for the subproblem. For each subproblem, the al-
gorithm generates a new individual by performing vari-
ation operators on some of its neighbouring individuals
(i.e., the individuals of its neighbouring subproblems).
The memory of both the considered subproblem and its
neighbouring subproblems will be updated if the new
individual is better than their current one.

In MOEA/D each individual in the population has
a unique weight vector, and all these weight vectors
are controlled by a parameter h. More precisely, for a
weight vector, each weight member takes a value from
{0/h, 1/h, ..., h/h}, and also it holds that the sum of all
the members of the weight vector is equal to 1.

MOEA/D has many good characteristics, including
a well-organised memory mechanism, the utility of the
neighbouring information in variation, and the non-
Pareto-based criterion in environmental selection. It
has been found that these become particularly beneficial
when dealing with some challenging multi-objective
optimisation problems (MOPs) [24, 28], like variable-
linkage problems [45], many-objective problems [31],
and combinatorial problems [14].

We initially implemented MOEA/D in a similar
way to NSGA-II: we integrated an implementation of
MOEA/D with functions that return the cost and cover-
age scores of a test suite and chose values for the param-
eters. Here, h is set to make the size of the population of
MOEA/D be approximately the same as that used with
NSGA-II. We performed some initial trials without any
normalisation like in NSGA-II, and found that the per-
formance was poor. This occurrence can be attributed
to the fact that the range of values of test suite cost
is much larger than that for the other objectives (cov-
erage), which makes the converted scalar optimisation
subproblems pay less attention to the coverage objec-
tive(s) during the evolutionary process. We therefore
normalised the cost of a test suite. This normalisation
was based on the maximum possible test suite cost max
and the minimum test suite cost min. Thus, min was set
to zero (the empty test suite) and max was set to the sum
of the costs of the test cases. For each experiment we
also introduced a parameter c: given a test suite T ′, we
set the normalised overall cost of T ′ to be the following.

(
∑

ti∈T ′ τ(ti)) − min
c × (max − min)

(7)

It could be argued that this leads to a version of
MOEA/D using a different fitness function and thus the
need to evaluate both NSGA-II and the greedy algo-
rithm using this alternative fitness function. However,
the above introduces a constant scaling and so does

not affect whether one candidate solution dominates an-
other. Since NSGA-II and the greedy algorithm operate
on the basis of dominance, the normalisation will not af-
fect the performance of these approaches and so there is
no need to separately evaluate NSGA-II and the greedy
algorithm using the normalised fitness value.

Later we report on the results of experiments that in-
vestigate two approaches, the first using a fixed value
of c suggested by initial experiments. In the second ap-
proach we allowed the value of c for an experiment (i.e.
for one subject and number of objectives) to be based
on some initial tuning and thus for the value of c to vary
between experiments. The aim was for the first more
restrictive scenario, in which the value of c is fixed, to
explore the potential performance in the situation where
a software engineer does not wish to tune the algorithm
for a particular problem. The aim of the second set of
experiments was to explore the potential for improve-
ment provided by tuning.

5. Experimental Design

5.1. Introduction
In this section we explain how the experiments, that

compared the alternative optimisation approaches, were
carried out. We initially describe the experimental sub-
jects, then give the values of the parameters used, and
finally outline the tools used in the experiments.

5.2. Experimental subjects
The experiments used seven subjects, with six be-

ing obtained from the Software-artifact Infrastructure
Repository (SIR)1 along with test suites. We used five
smaller SIR subjects, which were: two versions of gzip
(a Compression tool that is a GNU open-source pro-
gram); Schedule (a priority scheduler); tcas (an aircraft
collision avoidance system); and tot info (that takes in-
put data and computes some statistics). We also used
Space for the two objective problem since it is larger
than the other SIR subjects used by Yoo and Harman
and Yoo and Harman obtained quite different results
with Space (but very similar results with their other
experimental subjects). The seventh, larger, program
was the VoidAuth process within the Universal Payment
Gateway (UPG) service. This process is responsible for
cancelling an approved authorisation when a customer
has decided not to continue with a payment. This piece
of software implements a number of features, including
the following:

1At sir.unl.edu/
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1. Checking that the data in an input request is valid.
2. Choosing the correct gateway for an input request.
3. Converting an input request into the gateway re-

quest format.
4. Sending a gateway request to the corresponding

gateway service.
5. Accepting a response message from a gateway ser-

vice and sending this to the client.

The VoidAuth process module also contains about
10,000 lines of ‘.cs’ code.

The test cases for VoidAuth were manually generated
and these are publicly available along with the code2.
Table 1 provides details regarding the experimental sub-
jects (name; lines of code; and test suite size).

name lines of code test suite size
gzip-v3 7259 214
gzip-v4 7329 214

Schedule-v2 413 2650
tcas-v1 174 1608

tot info-v1 407 1052
Space 6199 300

VoidAuth 12600 530

Table 1: Experimental Subjects

5.3. Parameters
The greedy algorithm is deterministic so it was run

once for each experiment (combination of subject and
set of objectives). Since NSGA-II and MOEA/D are
stochastic they were executed 30 times for each experi-
ment to account for their inherent randomness. The ter-
mination criterion of the two algorithms was a prede-
fined number of evaluations, 100, 000 for all 2-, 3- and
4-objective instances.

In NSGA-II and MOEA/D, all individuals were
coded in a binary string format. An individual is a
test suite, which can be represented by a ‘choice’ for
each test case. A test case ti was denoted as a bit
(0 or 1) in the string, with 1 indicating ti being cho-
sen. Two commonly-used crossover and mutation op-
erations, uniform crossover and bit-flip mutation, were
used. A crossover probability pc = 1.0 and a mutation
probability pm = 1/n (where n is the number of decision
variables) were set according to [5].

The size of the population in NSGA-II was set to 100.
Note that the size of the population in MOEA/D is the

2These can be found at http://pan.baidu.com/s/1mgBNEVQ

same as the number of weight vectors, which depends
on the parameter h. Due to the combinatorial nature
of uniformly distributed weight vectors, the population
size cannot be arbitrarily specified. Here, we set h to
make the population size of MOEA/D the closest inte-
ger to 100 among the possible values (i.e., 100, 105, and
120 for 2-, 3-, and 4-objective problems, respectively).
The above configurations of NSGA-II and MOEA/D are
summarised in Table 2 and Table 3, respectively. Note
that while we could not use exactly the same population
size for the three and four objective problems, we did
give all of the stochastic methods the same number of
evaluations of the fitness function.

objective number population size evaluations
2 100 100, 000
3 100 100, 000
4 100 100, 000

Table 2: Parameters for NSGA-II

objective number h population size evaluations
2 99 100 100, 000
3 13 105 100, 000
4 7 120 100, 000

Table 3: Parameters for MOEA/D

Finally, the implementation of MOEA/D for the con-
sidered problem also required the parameter c. In a first
set of experiments we used a fixed value of c = 0.3 cho-
sen on the basis of an initial tuning process. We then
had a separate tuning process for each experiment and
used the values given in Table 4, which gives the value
of c used for each number of objectives.

program Two Objectives Three Objectives Four Objectives
gzip-v3 0.61 0.28 0.19
gzip-v4 0.30 0.46 0.19

schedule-v2 0.26 0.10 0.18
tcas-v1 0.30 0.20 0.30

tot info-v1 0.25 0.43 0.30
VoidAuth 0.40 0.20 0.60

Space 0.30

Table 4: Value of c for MOEA/D

5.4. Tool support
After running a test case ti, a tool would report the

items covered, with this being represented by a vector
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〈r1, . . . , rm〉 in which r j = 1 if ti covered the jth item
and otherwise r j = 0. For each form of coverage, the
coverage provided by a test case was therefore repre-
sented by a vector of 0s and 1s.

The statement coverage information for the SIR pro-
grams was derived using the GNU compiler, gcc, and
its profiling tool, gcov. The instrumentation was per-
formed by gcc during compilation. An instrumented
subject program produces execution-trace information
for each execution, which is converted to statement level
coverage information using gcov.

For the SIR programs, we wrote a tool that instru-
ments the code to provide branch coverage and MC/DC
coverage information. For branch coverage, the instru-
mented code simply reported the result of a decision
executed. For MC/DC coverage, instrumentation also
included instrumenting conditions within any decision
that had more than one condition.

While the SIR programs were written in C, VoidAuth
was written in C#. We obtained test execution costs
for VoidAuth by using Microsoft Visual Studio 2010,
and instrumenting the program to provide informa-
tion regarding statement coverage, branch coverage and
MC/DC coverage.

Finally, in order to estimate execution cost we used
a GPL system, Valgrind, that is designed for debug-
ging and profiling Linux programs. We used the Val-
grind profiling tool Callgrind, which creates a log that
contains information about the execution of the SUT.
The execution time (and so cost) was given by the
Timerange field from the log.

5.5. Performance Comparison Metric
It is possible to visually compare the performance of

alternative methods by plotting the points on a graph.
However, this approach becomes more difficult as the
number of objectives increases and does not provide any
statistical evidence. We therefore used the Hypervol-
ume (HV) [49] of a solution, a measure that is com-
monly used in multi-objective optimisation. HV cal-
culates the volume of the objective space between the
obtained solution set and a reference point, and a larger
value is preferable. HV has three main benefits as an
evaluation mechanism. First, HV has some good the-
oretical properties and, in particular, is Pareto compli-
ant: if a solution set A Pareto dominates a solution set B
(for any solution in B, there always exists a solution in
A that Pareto dominates it), then A will obtain a better
HV value than B. Second, the HV result of a solution
set reflects both its convergence to the problem’s Pareto
set and the diversity of the information: both proper-
ties considered by Yoo and Harman are captured by one

measure. In addition, unlike some performance met-
rics like Generational Distance (GD) [38] and Inverted
Generational Distance (IGD) [43], it is possible to use
HV without knowing the considered problem’s Pareto
set. This is an important property for real-world prob-
lems, where we typically do not know the Pareto set.
For clarity, we provide a normalised HV value of each
algorithm with respect to the proportion of the optimal
HV result achieved. This normalisation makes all of the
obtained results within the range [0, 1], with 1 repre-
senting the optimal value. Since the optimal HV of the
problems cannot be obtained by calculation, we, follow-
ing the practice in [27], estimated the optimal value by
the result of the mixed set consisting of all the obtained
solutions on a given problem.

In the calculation of HV, two crucial issues are the
scaling of the objective space and the choice of the refer-
ence point. Since the objectives in the considered prob-
lems take different ranges of values, we standardise the
objective value of the obtained solutions according to
the range of the approximation of the Pareto front. The
Pareto front approximation is the nondominated set of
all the obtained solutions. Following the recommenda-
tion in [15], the reference point was set to 1.1 times the
upper bound of the Pareto front approximation to em-
phasise the balance between proximity and diversity of
the tested algorithms.

6. Results and Discussion

6.1. Introduction

As previously explained, the stochastic methods were
each run 30 times. We performed some initial experi-
ments and found that the value c = 0.3 (for MOEA/D)
appeared to work well for many of the subjects and
then performed experiments for both MOEA/D with this
value of c and MOEA/D with the value of c varying
as shown in Table 4. We first describe the HV results
obtained with the smaller SIR programs, then the re-
sults with Space and finally the results with the (larger)
Void Auth subject. For each subject, we performed all
six pairwise comparisons across the four methods and
report the p-values of a Welch two-sample t-test for
the difference in the average HVs between the meth-
ods. The same conclusions were obtained using a non-
parametric Wilcoxon test due to the low variability in
the HV values across the 30 runs. The p-values were
adjusted using the Holm-Bonferroni method [12] to take
into account the number of tests performed. Finally, we
explore the impact of these differences on test suite size.
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6.2. The smaller SIR Programs
Table 5 gives the mean normalised HV for the

two-objective methods on the SIR programs, averaged
across 30 runs for the stochastic methods. The re-
sults show that NSGA-II and MOEA/D are significantly
more effective than the greedy algorithm in all cases
considered (p-values ≈ 0). For tcas-v1 the results are
identical for all of the stochastic algorithms as a result of
the problem being small: all runs of these algorithms re-
turned the same set of solutions. For the other subjects,
we find that MOEA/D with fixed c is significantly more
effective than NSGA-II on gzip-v4 and tot info-v1, but
significantly less effective on gzip-v3 and schedule-v2
(p-values ≈ 0). In contrast, MOEA/D with varying c has
a higher mean HV value than NSGA-II for all subjects:
the comparisons are all highly significant (p-value ≈ 0)
with the exception of schedule-v2, where the difference
is not statistically significant (p-value 0.21). For a visual
understanding of the solutions’ distribution, Figure 1
plots the final solutions of the greedy algorithm, NSGA-
II and MOEA/D (c = 0.3) for one run on the gzip-v4
problem.

Greedy NSGA-II MOEA/D MOEA/D
fixed c varying c

gzip-v3 0.968756 0.985749 0.982132 0.986071
gzip-v4 0.984493 0.991833 0.996564 0.996564

schedule-v2 0.905562 0.999606 0.986347 1.000000
tcas-v1 0.949391 0.991906 0.991906 0.991906

tot info-v1 0.929316 0.999152 0.999732 1.000000

Table 5: Normalised HV for SIR Programs and Two Objectives
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Figure 1: Solution sets obtained by the greedy algorithm, NSGA-II,
and MOEA/D (c = 0.3) on the 2-objective gzip-v4 problem.

Table 6 shows similar results for three-objective
methods. Greedy always has the lowest HV (p-values

≈ 0 for all comparisons). Also, there is no significant
difference between NSGA-II and MOEA/D (fixed and
varying c) on tcas-v1 (p-values larger than 0.3 for all
comparisons). For the other subjects the relative perfor-
mance of NSGA-II and MOEA/D with fixed c varies,
whereas MOEA/D with varying c is more efficient than
NSGA-II in all cases (p-values ≈ 0), with the exception
of tot inf-v1, where the difference is not significant (p-
value 0.95).

Greedy NSGA-II MOEA/D MOEA/D
fixed c varying c

gzip-v3 0.96796 0.98191 0.99118 0.989303
gzip-v4 0.96837 0.99621 0.98778 0.990970

schedule-v2 0.85269 0.95825 0.95865 0.995087
tcas-v1 0.97858 0.99988 0.99991 0.999929

tot info-v1 0.89965 0.99915 0.99384 0.999157

Table 6: Normalised HV for SIR Programs and Three Objectives

Table 7 shows the results for four-objectives. The
greedy algorithm always has the lowest HV (p-values
≈ 0 for all comparisons), and MOEA/D (with fixed and
varying c) and NSGA-II have the same efficiency on
tcas-v1, tot info-v1 and Voidauth. For the remaining
three cases, MOEA/D with fixed c is always less effec-
tive than both NSGA-II and MOEA/D with varying c
(p-values ≈ 0); MOEA/D with varying c always has the
highest mean HV, but the difference with NSGA-II is
not significant for schedule-v2 (p-value 0.85), whereas
it is significant in the other two cases (p-value 0.0071
for gzip-v3 and 0.018 for gzip-v4).

Greedy NSGA-II MOEA/D MOEA/D
fixed c varying c

gzip-v3 0.958261 0.978181 0.963971 0.980888
gzip-v4 0.960178 0.978630 0.967824 0.980589

schedule-v2 0.615664 0.995886 0.911465 0.996157
tcas-v1 0.983472 0.999989 0.999989 0.999989

tot info-v1 0.914306 0.982623 0.982623 0.982623

Table 7: Normalised HV for SIR Programs and Four Objectives

For all 15 experiments reported above we found that
the greedy algorithm was worst and MOEA/D with
varying c was always best (though in a few cases the re-
sult was not statistically significant). The relatively per-
formance of NSGA-II and MOEA/D with fixed c varied.
There appear to be no strong patterns regarding the rel-
ative performance of NSGA-II and MOEA/D with fixed
c, although in most cases MOEA/D was best with three
objectives (all but tot info-v1) and in all case NSGA-II
was best for four objectives.
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Figure 2: Evolutionary trajectories of the normalised HV for NSGA-II
and MOEA/D (c = 0.3) on the 2-objective gzip-v4 problem.

In order to investigate how the performance changes
over the course of the optimisation, Figure 2 plots the
normalised HV trajectories during 500,000 evaluations
for a typical run of NSGA-II and MOEA/D (c = 0.3) on
the 2-objective gzip-v4 problem. Similar results have
also been observed on the other problems. As seen, the
HV trajectory of both algorithms rapidly increases in the
initial stage of evolution, and approaches the optimal
value at around 100,000 evaluations. This means that
the evolutionary algorithms are able to converge well
within 100,000 evaluations.

6.3. Space

Yoo and Harman found that a greedy algorithm out-
performed NSGA-II for Space and so we carried out ex-
periments with Space and two objectives. Table 8 gives
the mean normalised HV for the two-objective methods.
Similar to Yoo and Harman we found that NSGA-II was
outperformed by the greedy algorithm (p-values ≈ 0).
Interestingly, both variants of MOEA/D outperformed
the greedy algorithm (p-value 0.042).

Greedy NSGA-II MOEA/D MOEA/D
fixed c varying c

Space 0.999947 0.901329 0.9999624 0.9999624

Table 8: Normalised HV for Space and Two Objectives

6.4. VoidAuth

Table 9 gives the normalised HV values for
VoidAuth, averaged across the 30 runs for the stochas-
tic methods. As before, MOEA/D with varying c has the

highest mean HV for all experiments, with all compar-
isons being highly significant (p-values ≈ 0). In con-
trast to earlier results, MOEA/D with fixed c outper-
forms NSGA-II in all cases (p-values ≈ 0). Surprisingly,
however, for the three objective experiments the greedy
algorithm outperformed both NSGA-II and MOEA/D
with fixed c. In addition, the greedy algorithm outper-
formed NSGA-II for two objectives (p-value ≈ 0).

# of Objectives Greedy NSGA-II MOEA/D MOEA/D
fixed c varying c

2 0.953961 0.948569 0.954703 0.955090
3 0.907430 0.888960 0.890862 0.908200
4 0.877899 0.995943 0.999746 0.999747

Table 9: Normalised HV for VoidAuth

Figure 3 shows a boxplot of the HV values for the 2-
objective methods. The plot shows little variability in
the HV values for the 30 runs of the stochastic meth-
ods (standard deviations 0.0003, 0.0002 and 0.0004 for
NSGA-II, MOEA/D with fixed c and MOEA/D with
varying c, respectively). This has been observed also
in the other cases considered and is the reason for the
very small p-values associated with most differences.
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Figure 3: Boxplot of HV values for VoidAuth and 2-objective meth-
ods.

6.5. Test suite size for full coverage

The HV values give us valuable information about
the relative effectiveness of the alternative optimisation
methods and we have seen that many of the differences
are statistically significant. In this section we explore
the potential consequences of these differences by fo-
cussing on one special case, which is when the tester
wants to achieve full coverage in each coverage criterion
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considered. While this is only one possible scenario, it
is realistic and much of the work on optimising regres-
sion testing has concerned this scenario. For each run,
with a particular combination of experimental subject,
number of objectives, and optimisation technique, we
examined the final population and determined whether
any of the test suites provided 100% coverage for all of
the coverage metrics being considered. For example, for
a run using two objectives we would examine the final
population to determine whether any of the test suites
provided 100% statement coverage. If there were such
test suites then we recorded the size of the smallest such
test suite across the 30 runs for the given combination
(of experimental subject, number of objectives, and op-
timisation technique). In this section we compare the
values found for the different techniques.

Greedy NSGA-II MOEA/D MOEA/D
fixed-c varying-c

gzip-v3 2237.7344 2213.2023 1987.625∗ 1987.625∗

gzip-v4 2240.1763 nil4 2173.935∗ 2173.935∗

schedule-v2 632.6253 490.1412 655.4564 487.996∗

tcas-v1 324.5444 324.476∗ 324.476∗ 324.476∗

tot info-v1 833.0993 833.0993 832.1132 828.045∗

Table 10: Test suites providing full coverage: the two objective case

Table 10 shows the results for the two objective case
and the SIR programs. Here, a value represents the cost
of the test suite found that achieves 100% coverage and
nil represents the case where there is no such test suite.
A star is used to show that the value is the (possibly
equally) best, a superscript of 2 denotes the value being
the second best, 3 for the third best, and 4 for the fourth.
It is immediately clear that in all cases MOEA/D with
varying c produces the best (cheapest) test suite. All
other techniques were worst in at least one case, with
NSGA-II failing to produce a test suite with 100% cov-
erage when applied to gzip-v4. Tables 11 and 12 shows
the results for the three and four objectives case respec-
tively.

Greedy NSGA-II MOEA/D MOEA/D
fixed-c varying-c

gzip-v3 2376.816∗ 2377.3864 2376.816∗ 2376.816∗

gzip-v4 2425.8512 2426.2184 2425.8512 2421.949∗

schedule-v2 657.0674 491.0132 642.2122 488.334∗

tcas-v1 433.5613 433.4993 433.478∗ 433.478∗

tot info-v1 944.3384 870.1062 882.1343 857.579∗

Table 11: Test suites providing full coverage: the three objective case

In all cases we see that MOEA/D with varying c

Greedy NSGA-II MOEA/D MOEA/D
fixed-c varying-c

gzip-v3 2442.7683 2401.356∗ 2496.1544 2401.356∗

gzip-v4 2425.853 2425.849∗ 2425.853 2425.849∗

schedule-v2 670.522∗ 678.263 908.7954 670.522∗

tcas-v1 433.5654 433.4943 433.5283 433.493∗

tot info-v1 1524.814 1433.58∗ 1482.2313 1433.58∗

Table 12: Test suites providing full coverage: the four objective case

produces the smallest test suite. We also observe that
NSGA-II failed to return a test suite with full coverage
in one case. The scale of the differences varies con-
siderably. For example, for tcas-v1 there is very little
difference in test suite size. In contrast, for schedule-
v2 and three objectives the greedy algorithm produces
a test suite of cost of over 650, while MOEA/D with
varying c produced a test suite with cost of under 500.
Another example is gzip-v3 with two objectives, where
the greedy algorithm and NSGA-II both produce test
suites with costs of over 2,200 while both versions
of MOEA/D produced test suites with costs of under
2,000.

Finally, Table 13 gives the values for VoidAuth.
Again, MOEA/D with varying c is best in all cases
but the greedy algorithm is equal best for the three and
four objective problems. The relative performance of
NSGA-II and MOEA/D with fixed c varies, with each
failing to return a test suite with full coverage in one
case.

Greedy NSGA-II MOEA/D MOEA/D
fixed-c varying-c

2obj 44913.2723 nil4 44173.7242 41636.924∗

3obj 46730.349∗ 47427.2973 nil4 46730.349∗

4obj 59222.27∗ 59726.5424 59222.27∗ 59222.27∗

Table 13: Test suites providing full coverage: VoidAuth

6.6. Computational cost of EMO algorithms

Table 14 gives the computational time of one run of
the two EMO algorithms NSGA-II and MOEA/D on the
six test suites3. Since the time difference of two versions
of MOEA/D is negligible, we only show the results of
the algorithm with fixed c. As can be seen from the ta-
ble, the computational cost of the algorithms generally
increases with the number of objectives. For the four

3The hardware used in the comparison experiment is a PC with 2.8
GHz Pentium 4 CPU with a memory of 1.00 GB.
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programs gzip-v3, gzip-v4, tcas-v1, and tot info-v1, the
two algorithms can be executed within 6 minutes for all
the three cases. For schedule-v2 and VoidAuth, the al-
gorithms take more time, with nearly 15 and 30 minutes
being required at most, respectively.

2-objective case 3-objective case 4-objective case
NSGA-II MOEA/D NSGA-II MOEA/D NSGA-II MOEA/D

gzip-v3 161.91 176.12 226.09 224.01 311.45 335.38
gzip-v4 161.31 179.38 237.52 254.06 294.55 319.70

schedule-v2 650.77 716.48 671.38 764.61 663.71 844.12
tcas-v1 197.27 204.75 204.51 217.88 217.78 243.72

tot info-v1 279.70 294.38 274.94 297.70 291.70 335.00
VoidAuth 971.58 782.67 1167.09 1178.91 1633.62 1579.95

Table 14: Computational time (s) of NSGA-II and MOEA/D on the
six programs

6.7. Summary of results

This section reported on the results of experiments
that compared four different techniques: a classic
greedy algorithm, NSGA-II (the previously used multi-
objective optimisation algorithm) and two varieties of
MOEA/D (fixed c and variable c). The primary method
for comparing the techniques was through the HV val-
ues since this measure has a number of important prop-
erties and effectively combines information about the
quality of the solutions and their diversity. We also
looked at the cost of the test suites returned that pro-
vided full coverage since this corresponds to one sce-
nario often considered.

MOEA/D with varying c was clearly the most ef-
fective technique. In all cases it produced the lowest
HV values and the differences were highly significant
in almost all cases. It also produced the cheapest test
suite that achieved all of the objectives. The relative
performance of the other methods varied. The greedy
algorithm was consistently outperformed by NSGA-II
and MOEA/D with fixed c for the smaller SIR pro-
grams. Similar to Yoo and Harman, we found that
the greedy algorithm outperformed NSGA-II for Space.
However, both variants of MOEA/D had superior per-
formance to both NSGA-II and the greedy algorithm for
Space. For VoidAuth, MOEA/D with fixed c always
outperformed NSGA-II but the greedy algorithm was
surprisingly effective (it outperformed MOEA/D with
fixed c for two objectives and outperformed NSGA-II
for both two and three objectives). Interestingly, Yoo
and Harman found that NSGA-II outperformed a greedy
algorithm for the Siemens programs used but not for
Space, which again is a larger program (but smaller than
VoidAuth). The relatively performance of NSGA-II and

MOEA/D with fixed c varied, with neither being consis-
tently preferable. However, MOEA/D with fixed c out-
performed NSGA-II on the two larger programs (Space
and VoidAuth).

7. Threats to Validity

In this section we briefly review the threats to valid-
ity in the experimental study and how these were ad-
dressed.

Threats to external validity relate to the degree to
which we can generalise from the experiments. Since
we can never know the true population of problems, and
certainly cannot randomly sample from this, our ability
to generalise from the results of software engineering
experiments is inevitable limited. We attempted to re-
duce the impact of this problem through our choice of
experimental subjects: as well as using well-known pro-
grams from the SIR suite (providing the potential for our
results to be compared with those of others), we used an
additional program from a different source. However,
this is still far from being a representative sample and
there is a need to perform additional experiments de-
spite the statistically highly significant results obtained.

Threats to internal validity concern any factors that
might introduce bias. In the experiments the techniques
were all applied using the same experimental subjects.
The nature of the evolutionary algorithms used did not
allow us to use identical population sizes but we chose
h values for MOEA/D to limit the differences. Im-
portantly, the evolutionary algorithms were given the
same resources (number of times the fitness function
was evaluated). Three of the algorithms are stochastic
and to reduce the impact of this in the comparison we
ran each experiment 30 times and used statistical tech-
niques to compare the resulting HV values. We also
adjusted the p values used in order to reflect the num-
ber of comparison used. Since all factors other than the
technique used were kept fixed, there is relatively little
threat of internal validity.

Finally, threats to construct validity reflect the possi-
bility that the measurements did not accurately reflect
the properties of interest. Such threats to validity might
arise when the tools are faulty. We limited these threats
by using tools that are widely used. For the SIR pro-
grams, which were written in C, we used gcov to com-
pute statement coverage and we used Valgrind to esti-
mate the cost of executing a test case. We instrumented
the code to return branch and MC/DC coverage infor-
mation. VoidAuth was written in C# and for this we ob-
tained coverage information through Microsoft Visual
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Studio 2010 and we instrumented the program to pro-
vide information regarding statement coverage, branch
coverage and MC/DC coverage. Where programs were
instrumented, the instrumented version was manually
reviewed and we checked the output of several test runs
to confirm that this was operating correctly.

8. Conclusion

Regression testing should be carried out whenever a
system or its environment is changed but this can be
an expensive and time consuming process. There has
thus been significant interest in test suite minimisation
techniques for regression testing in which some sub-
set of the regression test suite is chosen for use. Such
techniques have traditionally been seen as optimisation
techniques in which one aims to minimise the cost of
testing subject to retaining full coverage for some cov-
erage metric used. More recently, however, Yoo and
Harman observed that there may be several coverage
metrics of interest and also that there is value in return-
ing to the tester a set of subsets of the regression test
suite that provide alternative points in the trade-off be-
tween test suite execution cost and a vector of coverage
values. This leads to the problem being represented as a
multi-objective optimisation problem and the NSGA-II
algorithm has previously been proposed [41].

This paper developed further the multi-objective ap-
proach of Yoo and Harman [41]. As well as the greedy
algorithm and the multi-objective evolutionary algo-
rithm NSGA-II used by Yoo and Harman, we also ap-
plied a more recently developed multi-objective evolu-
tionary algorithm MOEA/D [43]. A second develop-
ment relates to how algorithms were compared. The
main approach previously used operated as follows:
take the union of the non-dominated solutions produced
by the algorithms, form a new set P of non-dominated
solutions from these, and for an algorithm A determine
how many of its solutions are not Pareto dominated by
solutions in P [41]. Yoo and Harman also compared
the sizes of the non-dominated solutions returned by
the algorithms, arguing that an algorithm that returns
many solutions provides the tester with more options.
While this approach to evaluation is sensible, both as-
pects (convergence to the problem’s Pareto front and the
diversity of the information) are captured by the Hyper-
volume (HV) [49] of a solution set so we used this in
our evaluation.

Interestingly, we found that initially MOEA/D per-
formed poorly since the range of values for test suite
cost is much larger than the range of values for cover-
age. This led us to adapt MOEA/D by introducing nor-

malisation, with the normalisation including a constant
c. Some initial trials suggested that a value of c = 0.3
works well so this led to two versions of MOEA/D: one
with fixed c (c = 0.3) and another where the value of c
was separately chosen for each experiment (subject and
number of objectives). The experiments therefore com-
pared four techniques: a greedy algorithm, NSGA-II,
MOEA/D with fixed c, and MOEA/D with varying c.

We used five smaller experimental subjects from the
SIR repository plus Space and one larger real-world sys-
tem, VoidAuth. VoidAuth implements processes of the
Universal Payment Gateway (UPG) service. MOEA/D
with variable c had the best performance in all of the
experiments, with the differences being statistically sig-
nificant in almost all cases. The relative performance of
the other methods varied. For the smaller SIR programs
the greedy algorithm was always worst and the rela-
tive performance of NSGA-II and MOEA/D with fixed
c varied. Similar to Yoo and Harman, we found that
the greedy algorithm outperformed NSGA-II on Space.
Interestingly, for Space both versions of MOEA/D per-
formed better than both NSGA-II and the greedy algo-
rithm. For VoidAuth we found that the greedy algorithm
outperformed NSGA-II for the two and three objective
problems and outperformed MOEA/D with fixed c for
the three objective problem. In all cases MOEA/D with
fixed c outperformed NSGA-II for the larger program,
VoidAuth. Overall, although NSGA-II performed well
in some experiments, the performance of MOEA/D was
more robust.

While HV is widely used in evaluating multi-
objective algorithms, it is not immediately clear what
these differences in HV values mean to the software en-
gineer. We therefore also considered a specific scenario,
where the tester decides to use a test suite that provides
full coverage for each metric considered. MOEA/D
with variable c returned the smallest test suite in ev-
ery experiment. We also looked at how the HV values
changed as we let the number of evaluations of NSGA-
II and MOEA/D increase and found that for both algo-
rithms the HV values rapidly increased and converged
at around 100,000 evaluations.

There are several lines of future work. First, there is
a need to perform additional experiments in which the
methods are applied to a wider range of experimental
subjects. The use of c = 0.3 was based on some ini-
tial tuning and additional experiments are required in
order to determine whether this really is a good choice.
It would also be interesting to explore the sensitivity of
MOEA/D with regards to changes in the value of c. Fi-
nally, there is the challenge of developing a version of
MOEA/D that does not require the parameter c in the
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normalisation process.
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