660 research outputs found

    Division of Continuing Education

    Get PDF
    This departmental history was written on the occasion of the UND Quasquicentennial in 2008.https://commons.und.edu/departmental-histories/1072/thumbnail.jp

    Carbon coated magnetic nanoparticles as supports in microwave-assisted palladium catalyzed Suzuki-Miyaura couplings

    Get PDF
    A palladium bis-N-heterocyclic carbene complex was immobilized on polystyrene modified, magnetic carbon coated iron nanoparticles and evaluated in Suzuki-Miyaura cross-coupling reactions under conventional and microwave heating. Under the latter conditions, both aryl bromides and aryl chlorides could be employed as substrates at low loading of catalyst (0.2 mol%), which could be readily recovered by an external magnet and reused in at least four cycles. As a possible deactivation pathway of the catalyst, the formation of palladium nanoparticles in the course of the reaction that became encapsulated in the polystyrene matrix of the support is suggeste

    Ecological and genetic effects of introduced species on their native competitors

    Full text link
    Species introductions to new habitats can cause a decline in the population size of competing native species and consequently also in their genetic diversity. We are interested in why these adverse effects are weak in some cases whereas in others the native species declines to the point of extinction. While the introduction rate and the growth rate of the introduced species in the new environment clearly have a positive relationship with invasion success and impact, the influence of competition is poorly understood. Here, we investigate how the intensity of interspecific competition influences the persistence time of a native species in the face of repeated and ongoing introductions of the nonnative species. We analyze two stochastic models: a model for the population dynamics of both species and a model that additionally includes the population genetics of the native species at a locus involved in its adaptation to a changing environment. Counterintuitively, both models predict that the persistence time of the native species is lowest for an intermediate intensity of competition. This phenomenon results from the opposing effects of competition at different stages of the invasion process: With increasing competition intensity more introduction events are needed until a new species can establish, but increasing competition also speeds up the exclusion of the native species by an established nonnative competitor. By comparing the ecological and the eco-genetic model, we detect and quantify a synergistic feedback between ecological and genetic effects.Comment: version accepted at Theoretical Population Biolog

    Separation of Recollision Mechanisms in Nonsequential Strong Field Double Ionization of Ar: The Role of Excitation Tunneling

    Get PDF
    Vector momentum distributions of two electrons created in double ionization of Ar by 25 fs, 0.25PW/cm2 laser pulses at 795 nm have been measured using a ā€œreaction microscope.ā€ At this intensity, where nonsequential ionization dominates, distinct correlation patterns are observed in the two-electron momentum distributions. A kinematical analysis of these spectra within the classical ā€œrecollision modelā€ revealed an (e,2e)-like process and excitation with subsequent tunneling of the second electron as two different ionization mechanisms. This allows a qualitative separation of the two mechanisms demonstrating that excitation-tunneling is the dominant contribution to the total double ionization yield

    Non-Sequential Double Ionization of Ne in Intense Laser Pulses: A Coincidence Experiment

    Get PDF
    The dynamics of Neon double ionization by 25 fs, 1.0 PW/cm2 laser pulses at 795 nm has been studied in a many particle coincidence experiment. The momentum vectors of all ejected atomic fragments (electrons and ions) have been measured using combined electron and recoil-ion momentum spectroscopy. Electron emission spectra for double and single ionization will be discussed. In both processes the mean electron energies differ considerably and high energetic electrons with energies of more than 120 eV have been observed for double ionization. The experimental results are in qualitative agreement with the rescattering model

    Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease)

    Get PDF
    The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80ā€“85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery

    Estrogen receptor-Ī± recruits P-TEFb to overcome transcriptional pausing in intron 1 of the MYB gene

    Get PDF
    The MYB proto-oncogene is expressed in most estrogen receptor-positive (ERĪ± +) breast tumors and cell lines. Expression of MYB is controlled, in breast cancer and other cell types, by a transcriptional pausing mechanism involving an attenuation site located āˆ¼1.7kb downstream from the transcription start site. In breast cancer cells, ligand-bound ERĪ± binds close to, and drives transcription beyond this attenuation site, allowing synthesis of complete transcripts. However, little is known, in general, about the factors involved in relieving transcriptional attenuation, or specifically how ERĪ± coordinates such factors to promote transcriptional elongation. Using cyclin dependent kinase 9 (CDK9) inhibitors, reporter gene assays and measurements of total and intronic MYB transcription, we show that functionally active CDK9 is required for estrogen-dependent transcriptional elongation. We further show by ChIP and co-immunoprecipitation studies that the P-TEFb complex (CDK9/CyclinT1) is recruited to the attenuation region by ligand-bound ERĪ±, resulting in increased RNA polymerase II Ser-2 phosphorylation. These data provide new insights into MYB regulation, and given the critical roles of MYB in tumorigenesis, suggest targeting MYB elongation as potential therapeutic strategy
    • ā€¦
    corecore