51 research outputs found

    The impacts of higher education institutions on sustainable development: A review and conceptualization

    Get PDF
    Purpose: This paper aims to conceptualize impacts of higher education institutions (HEIs) on sustainable development (SD), complementing previous literature reviews by broadening the perspective from what HEIs do in pursuit of SD to how these activities impact society, the environment and the economy. Design/methodology/Approach: The paper provides a systematic literature review of peer-reviewed journal articles published between 2005 and 2017. Inductive content analysis was applied to identify major themes and impact areas addressed in the literature to develop a conceptual framework detailing the relationship between HEIs- activities and their impacts on SD. Findings: The paper identi fi es six impact areas where direct and indirect impacts of HEIs on SD may occur. The fi ndings indicate a strong focus on case studies dealing with speci fi c projects and a lack of studies analyzing impacts from a more holistic perspective. Practical implications: This systematic literature review enables decision-makers in HEIs, researchers and educators to better understand how their activities may affect society, the environment and the economy, and it provides a solid foundation to tackle these impacts. Social implications: The review highlights that HEIs have an inherent responsibility to make societies more sustainable. HEIs must embed SD into their systems while considering their impacts on society. Originality/value: This paper provides a holistic conceptualization of HEIs- impacts on SD. The conceptual framework can be useful for future research that attempts to analyze HEIs- impacts on SD from a holistic perspective

    Responsible Research and Innovation in Industry-Challenges, Insights and Perspectives

    Get PDF
    The responsibility of industry towards society and the environment is a much discussed topic, both in academia and in business. Responsible Research and Innovation (RRI) has recently emerged as a new concept with the potential to advance this discourse in light of two major challenges industry is facing today. The first relates to the accelerating race to innovate in order to stay competitive in a rapidly changing world. The second concerns the need to maintain public trust in industry through innovations that generate social value in addition to economic returns. This Special Issue provides empirical and conceptual contributions that explore corporate motivations to adopt RRI, the state of implementation of concrete RRI practices, the role of stakeholders in responsible innovation processes, as well as drivers and barriers to the further diffusion of RRI in industry. Overall, these contributions highlight the relevance of RRI for firms of different sizes and sectors. They also provide insights and suggestions for managers, policymakers and researchers wishing to engage with responsibility in innovation. This editorial summarizes the most pertinent conclusions across the individual articles published in this Special Issue and concludes by outlining some fruitful avenues for future research in this space

    Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection

    Get PDF
    Throughout tomato domestication, a large increase in fruit size was associated with a loss of dry matter and sugar contents. This study aims to dissect the contributions of genetic variation and the physiological processes underlying the relationships between fruit growth and the accumulation of dry matter and sugars. Fruit quality traits and physiological parameters were measured on 20 introgression lines derived from the introgression of Solanum chmielewskii into S. lycopersicum, under high (HL, unpruned trusses) and low (LL, trusses pruned to one fruit) fruit load conditions. Inter- and intra-genotypic correlations among traits were estimated and quantitative trait loci (QTL) for size, composition, and physiological traits were mapped. LL increased almost all traits, but the response of sugar content was genotype-dependent, involving either dilution effects or differences in carbon allocation to sugars. Genotype×fruit load interactions were significant for most traits and only 30% of the QTL were stable under both fruit loads. Many QTL for fresh weight and cell or seed numbers co-localized. Eleven clusters of QTL for fresh weight and dry matter or sugar content were detected, eight with opposite allele effects and three with negative effects. Two genotypic antagonistic relationships, between fresh weight and dry matter content and between cell number and cell size, were significant only under HL; the second could be interpreted as a competition for carbohydrates among cells. The role of cuticular conductance, fruit transpiration or cracking in the relationship between fruit fresh weight and composition was also emphasized at the genetic and physiological levels

    High air humidity causes atmospheric water absorption via assimilating branches in the deep-rooted tree Haloxylon ammodendron in an arid desert region of northwest China

    Get PDF
    Atmospheric water is one of the main water resources for plants in arid ecosystems. However, whether deep-rooted, tomentum-less desert trees can absorb atmospheric water via aerial organs and transport the water into their bodies remains poorly understood. In the present study, a woody, deep-rooted, tomentum-less plant, Haloxylon ammodendron (C.A. Mey.) Bunge, was selected as the experimental object to investigate the preconditions for and consequences of foliar water uptake. Plant water status, gas exchange, and 18O isotopic signatures of the plant were investigated following a typical rainfall pulse and a high-humidity exposure experiment. The results showed that a high content of atmospheric water was the prerequisite for foliar water uptake by H. ammodendron in the arid desert region. After atmospheric water was absorbed via the assimilating branches, which perform the function of leaves due to leaf degeneration, the plant transported the water to the secondary branches and trunk stems, but not to the taproot xylem or the soil, based on the 18O isotopic signatures of the specimen. Foliar water uptake altered the plant water status and gas exchange-related traits, i.e., water potential, stomatal conductance, transpiration rate, and instantaneous water use efficiency. Our results suggest that atmospheric water might be a subsidiary water resource for sustaining the survival and growth of deep-rooted plants in arid desert regions. These findings contribute to the knowledge of plant water physiology and restoration of desert plants in the arid regions of the planet

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps

    Get PDF
    We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci,135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency 2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).Peer reviewe

    Protein crystallization in living cells

    No full text
    Protein crystallization in living cells has been observed surprisingly often as a native assembly process during the past decades, and emerging evidence indicates that this phenomenon is also accessible for recombinant proteins. But only recently the advent of high-brilliance synchrotron sources, X-ray free-electron lasers, and improved serial data collection strategies has allowed the use of these micrometer-sized crystals for structural biology. Thus, in cellulo crystallization could offer exciting new possibilities for proteins that do not crystallize applying conventional approaches. In this review, we comprehensively summarize the current knowledge of intracellular protein crystallization. This includes an overview of the cellular functions, the physical properties, and, if known, the mode of regulation of native in cellulo crystal formation, complemented with a discussion of the reported crystallization events of recombinant proteins and the current method developments to successfully collect X-ray diffraction data from in cellulo crystals. Although the intracellular protein self-assembly mechanisms are still poorly understood, regulatory differences between native in cellulo crystallization linked to a specific function and accidently crystallizing proteins, either disease associated or recombinantly introduced, become evident. These insights are important to systematically exploit living cells as protein crystallization chambers in the future

    Towards a Business Case for Responsible Innovation

    No full text
    There is still work to be done in conceptualizing how responsible innovation applies to business. Lessons can be drawn from adjacent fields of inquiry such as sustainability-oriented or social innovation. However, the central challenge of developing a business case for responsible innovation requires additional insights into how responsible innovation may support companies in generating competitive advantage, and what levers can be effectively employed to engage business. This final chapter summarises the most important lessons learned from the contributions to this volume. Based on these insights, the authors develop the outlines of a business case for responsible innovation. In doing so, they show that responsibility and innovation can mutually strengthen each other. Such a synergy between responsibility and innovation may help to maintain trust in business’ ability to drive desirable social change while improving innovation performance
    corecore