91 research outputs found

    Effects of Storage Time on Glycolysis in Donated Human Blood Units

    Get PDF
    Background: Donated blood is typically stored before transfusions. During storage, the metabolism of red blood cells changes, possibly causing storage lesions. The changes are storage time dependent and exhibit donor-specific variations. It is necessary to uncover and characterize the responsible molecular mechanisms accounting for such biochemical changes, qualitatively and quantitatively; Study Design and Methods: Based on the integration of metabolic time series data, kinetic models, and a stoichiometric model of the glycolytic pathway, a customized inference method was developed and used to quantify the dynamic changes in glycolytic fluxes during the storage of donated blood units. The method provides a proof of principle for the feasibility of inferences regarding flux characteristics from metabolomics data; Results: Several glycolytic reaction steps change substantially during storage time and vary among different fluxes and donors. The quantification of these storage time effects, which are possibly irreversible, allows for predictions of the transfusion outcome of individual blood units; Conclusion: The improved mechanistic understanding of blood storage, obtained from this computational study, may aid the identification of blood units that age quickly or more slowly during storage, and may ultimately improve transfusion management in clinics

    Posttransplant Thrombopoiesis Predicts Survival in Patients Undergoing Autologous Hematopoietic Progenitor Cell Transplantation

    Get PDF
    AbstractThe frequency and clinical significance of secondary thrombocytopenia following initial engraftment in autologous hematopoietic progenitor cell transplantation (HPCT) is unknown. An institutional review board approved retrospective study of thrombopoiesis was performed in 359 patients transplanted with autologous blood (97%) or marrow (3%) who achieved platelet engraftment to >50,000/μL. Idiopathic secondary posttransplant thrombocytopenia (ISPT) was defined as >50% decline in blood platelets to <100,000/μL in the absence of relapse or sepsis. ISPT occurred at a median of day +35 posttransplant in 17% of patients. Patients with ISPT had similar initial platelet engraftment (median 17 days) versus non-ISPT patients (18 days; P = NS) and recovered platelet counts (median 123,00 K/μL) by day 110 posttransplant. Four factors were independently associated with post-transplant death in a multivariate model: disease status at transplant; the number of prior chemotherapy regimens, failure to achieve a platelet count of >150,000/μL posttransplant, and the occurrence of ISPT. A prognostic score was developed based upon the occurrence of ISPT and posttransplant platelet counts of <150,000/μL. Survival of patients with both factors (n = 25) was poor (15% alive at 5 years); patients with 1 factor (n = 145) had 49% 5-year survival; patients with 0 factors (n = 189) had 72% 5-year survival. Patients who failed to achieve a platelet count of >150,000/μL received significantly fewer CD34+ cells/kg (P < .001), whereas patients with ISPT received fewer CD34+CD38− cells/kg (P = .0006). The kinetics of posttransplant thrombopoiesis is an independent prognostic factor for long-term survival following autologous HPC. ISPT and lower initial posttransplant platelet counts reflect poor engraftment with long-term and short-term repopulating CD34+ hematopoietic stem cells, respectively, and are associated with an increased risk of death from disease relapse

    Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle

    Get PDF
    The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite

    Effect of swab pooling on the Accula point-of-care RT-PCR for SARS-CoV-2 detection

    Get PDF
    IntroductionSwab pooling may allow for more efficient use of point-of-care assays for SARS-CoV-2 detection in settings where widespread testing is warranted, but the effects of pooling on assay performance are not well described.MethodsWe tested the Thermo-Fisher Accula rapid point-of-care RT-PCR platform with contrived pooled nasal swab specimens.ResultsWe observed a higher limit of detection of 3,750 copies/swab in pooled specimens compared to 2,250 copies/swab in individual specimens. Assay performance appeared worse in a specimen with visible nasal mucous and debris, although performance was improved when using a standard laboratory mechanical pipette compared to the transfer pipette included in the assay kit.ConclusionClinicians and public health officials overseeing mass testing efforts must understand limitations and benefits of swab or sample pooling, including reduced assay performance from pooled specimens. We conclude that the Accula RT-PCR platform remains an attractive candidate assay for pooling strategies owing to the superior analytical sensitivity compared to most home use and point-of-care tests despite the inhibitory effects of pooled specimens we characterized

    A Tale of Two Visions: Can a New View of Personality Help Integrate Psychology?

    Get PDF
    Personality psychology studies how psychological systems work together. Consequently, the field can act as a unifying resource for the broader discipline of psychology. Yet personality’s current fieldwide organization promotes a fragmented view of the person, seen through such compet-ing theories as the psychodynamic, trait, and humanistic. There exists an alternative—a systems framework for per-sonality—that focuses on 4 topics: identifying personality, personality’s parts, its organization, and its development. This new framework and its view of personality are de-scribed. The framework is applied to such issues as per-sonality measurement, psychotherapy outcome research, and education. The new framework may better organize the field of personality and help with its mission of addressing how major psychological systems interrelate

    The Economic Value of Cultural Diversity: Evidence from US Cities

    Full text link

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link
    • …
    corecore