84 research outputs found

    Curiosity search for non-equilibrium behaviors in a dynamically learned order parameter space

    Full text link
    Exploring the spectrum of novel behaviors a physical system can produce can be a labor-intensive task. Active learning is a collection of iterative sampling techniques developed in response to this challenge. However, these techniques often require a pre-defined metric, such as distance in a space of known order parameters, in order to guide the search for new behaviors. Order parameters are rarely known for non-equilibrium systems \textit{a priori}, especially when possible behaviors are also unknown, creating a chicken-and-egg problem. Here, we combine active and unsupervised learning for automated exploration of novel behaviors in non-equilibrium systems with unknown order parameters. We iteratively use active learning based on current order parameters to expand the library of known behaviors and then relearn order parameters based on this expanded library. We demonstrate the utility of this approach in Kuramoto models of coupled oscillators of increasing complexity. In addition to reproducing known phases, we also reveal previously unknown behavior and related order parameters

    Root traits vary as much as leaf traits and have consistent phenotypic plasticity among 14 populations of a globally widespread herb

    Get PDF
    Our understanding of plant functional trait variation among populations and how this relates to local adaptation to environmental conditions is largely shaped by above-ground traits. However, we might expect below-ground traits linked to resource acquisition and conservation to vary among populations that experience different environmental conditions. Alternatively, below-ground traits might be highly plastic in response to growing conditions, such as availability of soil resources and association with symbiont arbuscular mycorrhizal fungi (AMF). We assessed (i) the strength of among-population variation in above- and below-ground traits, (ii) the effects of growing conditions on among-population variation and (iii) whether variation among populations is linked to source environment conditions, in a globally distributed perennial Plantago lanceolata. Using seeds from 14 populations across three continents, we grew plants in a common garden experiment and measured leaf and root traits linked to resource acquisition and water conservation. We included two sets of experimental treatments (high or low water availability; with and without AMF inoculation), which enabled us to assess trait responses to growing conditions. Across treatments, the percentage of root trait variation explained by populations and continents was 9%–26%, compared to 7%–20% for leaf trait variation. From principal component analysis (PCA), the first PC axis for both root and leaf traits largely reflected plant size, while the second PC broadly captured mass allocation. Root mass allocation (PC 2) was related to mean annual temperature and mean moisture index, indicating that populations from cooler, wetter environments had longer, thinner roots. However, we found little support for a relationship between source environment and leaf trait PCs, root system size (PC1) or individual traits. Water availability and AMF inoculation effects on size were consistent among populations, with larger plants under AMF inoculation, and less mass allocation to leaves under lower water availability. Plantago lanceolata shows substantial population-level variation in a suite of root traits, but that variation is only partially linked to the source environmental variables studied. Despite considerable differences in source abiotic environments, geographically separated populations have retained a strong and similar capacity for phenotypic plasticity both above and below-ground. Read the free Plain Language Summary for this article on the Journal blog.</p

    Global gene flow releases invasive plants from environmental constraints on genetic diversity

    Get PDF
    When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata. Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area

    Dealing with the Unthinkable: A Study of the Cognitive and Emotional Effects of Adult and Child Homicide Cases on Police Investigators.

    Get PDF
    Although the death of a child is without doubt one of the most distressing events imaginable, when it occurs in suspicious circumstances, such as at the hand of a parent or close family member, its effects are often more acute and incomprehensible. This paper presents an exploratory study comparing the cognitive and emotional stressors experienced by police when investigating child and adult homicides. The results of an online survey questionnaire with 99 experienced UK police investigators are presented, with key differences found in the cognitive and emotional stress experienced depending on whether the victim is a child or an adult, key differences and similarities identified in the ways investigators deal and cope with adult and child homicide cases, with a tentative discussion of the implications for the well-being and training of police investigators provided

    Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin.</p> <p>Results</p> <p>After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex.</p> <p>Conclusions</p> <p>We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins.</p

    Cognitive and emotional stressors of child homicide investigations on UK and Danish police investigators

    Get PDF
    In a previous paper, key differences in the form and manifestation of cognitive and emotional stress experienced by investigators of adult and child homicide were identified, along with a cursory look at how investigators commonly deal or cope with these effects. In this paper, the findings from eleven interviews with UK and Danish police officers with experience of investigating both adult and child homicides, suggest that child homicide investigations can have a profoundly different effect on police investigators that can vary between officers. The effects experienced and coping strategies employed were similar among officers in Denmark and the UK, and these included becoming more emotionally closed and engaging in regular sport and exercise. The findings hold important implications for police training and for the welfare of current and future police homicide investigators particularly where the victim is a child

    Phenotypic plasticity masks range-wide genetic differentiation for vegetative but not reproductive traits in a short-lived plant

    Get PDF
    Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness
    corecore