5 research outputs found

    Transversal Eccentric Domination in Graphs

    Get PDF
    We introduce transversal eccentric dominating(TED) set. An eccentric dominating set DD is called a TED-set if it intersects with every minimum eccentric dominating set DD'. We find the TED-number γted\gamma_{ted} of some standard graphs. Results are stated and proved

    Coupling distance in Graphs

    Get PDF
    In this paper the coupling distance of simple connected graphs are introduced. The different parameters of coupling distance like coupling eccentricity, coupling radius, coupling diameter, coupling center and coupling periphery are defined. The coupling parameters for different standard graphs are obtained

    Equitable eccentric domination in graphs

    Get PDF
    In this paper, we define equitable eccentric domination in graphs. An eccentric dominating set S ⊆ V (G) of a graph G(V, E) is called an equitable eccentric dominating set if for every v ∈ V − S there exist at least one vertex u ∈ V such that |d(v) − d(u)| ≤ 1 where vu ∈ E(G). We find equitable eccentric domination number γeqed(G) for most popular known graphs. Theorems related to γeqed(G) have been stated and proved

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore