Coupling Distance in Graphs

Riyaz Ur Rehman A* and A Mohamed Ismayil ${ }^{\dagger}$

Abstract

: In this paper, the coupling distance of simple connected graphs is introduced. Different parameters of coupling distance like coupling eccentricity, coupling radius, coupling diameter, coupling center, and coupling periphery are defined. The coupling parameters for different standard graphs are obtained.

Keywords: coupling distance, coupling eccentricity, coupling radius, coupling diameter.

1. Introduction

With the advent of connected networks, graph theory is no more limited only to showing interconnections between entities. Researchers have explored different possibilities with the study of different distance concepts. There are many types of distances in graphs, the eccentric distance being the shortest distance between any two vertices. Distance in graphs by F Buckley and F Harary[1] gives an insight into distance concepts in graphs. The distance concepts like superior distance[5], signal distance[6], detour distance[2], and D-distance[9] are the inspiration for this work.

[^0]In this paper, we introduce coupling distance in graphs and study some of its properties. The coupling distance between any two vertices is the summation of the length of the shortest path between every pair of vertices added to the total number of vertices present on the path. Theorems related to the relation between coupling distance parameters like coupling radius, coupling diameter, coupling center, and coupling periphery are stated and proved. In this paper, only non-trivial, finite, undirected simple, and connected graphs are considered. For undefined terminologies refer to the book Graph Theory by Harary[3].

2. Preliminaries

Definition 2.1: A graph $G=(V, E)$ consists of a set of objects $V=$ $\left\{v_{1}, v_{2}, v_{3} \ldots v_{n}\right\}$ called vertices and another set $E=\left\{e_{1}, e_{2}, e_{3} \ldots e_{m}\right\}$ whose elements are called edges, such that each edge ' e_{k} ' is associated with a pair of vertices $\left(v_{i}, v_{j}\right)$.
Definition 2.2 [3]: The order and size of G are given by $|V(G)|=n$ and $|E(G)|=m$ respectively.
Definition 2.3 [3]: The distance $d(u, v)$ between vertices u and v is the minimum number of edges in a $u-v$ path.

Definition 2.4 [4]: The eccentricity of $u \in V(G)$ is $\operatorname{ecc}(u)=$ $\max \{d(u, v): v \in V(G)\}$. The radius of G is $\operatorname{rad}(G)=\min \{\operatorname{ecc}(u): u \in$ $V(G)\}$ and the diameter of G is $\operatorname{diam}(G)=\max \{\operatorname{ecc}(u): u \in V(G)\}$.

Definition 2.5 [7,8]: The friendship graph F_{n} can be constructed by joining n copies of the cycle C_{3} with a common vertex. F_{n} has $2 n+1$ vertices and $3 n$ edges.

3. Coupling Distance in Graphs

In this section, coupling distance is introduced and its parameters like coupling eccentricity, coupling radius, and coupling diameter are also defined.

Definition 3.1: The coupling distance between any two vertices in a graph is defined
as $\mathfrak{C}_{d}(u, v)=d(u, v)+\sum_{w \in P d(u, v)}|w|$, where $d(u, v)$ is the geodesic distance between u and v and $\operatorname{Pd}(u, v)$ is the geodesic path between u and v.

Example 3.1: Consider the graph given in Figure-1

Figure-1

The shortest distance between v_{1} and v_{2} is 1 and the number of vertices on the path is 2 . Therefore, the coupling distance is $1+2=$ $3=\mathfrak{C}_{d}\left(v_{1}, v_{2}\right)$. There are two paths between v_{2} and v_{3}, the first path is $v_{2}-v_{1}-v_{3}$ and the second path is $v_{2}-v_{5}-v_{6}-v_{3}$. The first path is shorter than the second path. Therefore, the coupling distance between v_{2} and v_{3} is $2+3=5=\mathfrak{C}_{d}\left(v_{2}, v_{3}\right)$. Similarly, $\mathfrak{v}_{d}\left(v_{2}, v_{4}\right)=$ 7. Symbolically, $\mathfrak{C}_{d}\left(v_{1}, v_{2}\right)=d\left(v_{1}, v_{2}\right)+\sum_{w \in P d\left(v_{1}, v_{2}\right)}|w|=1+2=3$.
$\mathfrak{C}_{d}\left(v_{2}, v_{3}\right)=d\left(v_{2}, v_{3}\right)+\sum_{w \in \operatorname{Pd}\left(v_{2}, v_{3}\right)}|w|=2+3=5$.
$\mathfrak{C}_{d}\left(v_{2}, v_{4}\right)=d\left(v_{2}, v_{4}\right)+\sum_{w \in \operatorname{Pd}\left(v_{2}, v_{4}\right)}|w|=3+4=7$.

Observation 3.1:

(i) For any graph G, let $u, v \in V(G)$. If $d(u, v)=n$ then $\mathfrak{C}_{d}(u, v)=$ $2 n+1$.
(ii) For a connected graph $G, \mathfrak{C}_{d}(u, v)>d(u, v)$.
(iii) For any graph $G, \mathfrak{c}_{d}(u, v) \geq 3, \forall u, v \in V(G), u \neq v$.
(iv) For any two vertices in a complete graph $K_{n}, \mathfrak{c}_{d}(u, v)=3$.
(v) For any graph $G, \mathfrak{C}_{d}(u, v)=0$ if G is disconnected or if $u=v$.
(vi) For any two vertices $u, v \in V(G)$ with $|V(G)|=p$, then $0 \leq$ $d(u, v)<\mathfrak{C}_{d}(u, v)$.

4. Results on Coupling Distance in Graphs

Observation 4.1: The coupling distance is symmetric, therefore $\mathfrak{C}_{d}(u, v)=\mathfrak{C}_{d}(v, u)$.

Theorem 4.2: Let $P: u_{1}, u_{2}, \ldots, u_{n}$ be a shortest path in a graph G, then $\mathfrak{C}_{d}\left(u_{1}, u_{n}\right)=\mathfrak{C}_{d}\left(u_{1}, u_{m}\right)+\mathfrak{C}_{d}\left(u_{m}, u_{n}\right)$, where $1<m<n$.

Proof: Let G be a connected graph. By the definition of coupling distance, we know that $\mathfrak{C}_{d}(u, v)=d(u, v)+\sum_{w \in \operatorname{Pd}(u, v)}|w|$. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of graph G. Let $u_{1}-u_{m}$ and $u_{m}-u_{n}$ be the shortest paths in G.
$\mathfrak{C}_{d}\left(u_{1}, u_{m}\right)=d\left(u_{1}, u_{m}\right)+\sum_{z \in P d\left(u_{1}, u_{m}\right)}|z|=(m-1)+m=2 m-$ 1 and
$\mathfrak{C}_{d}\left(u_{m}, u_{n}\right)=d\left(u_{m}, u_{n}\right)+\sum_{z \in P d\left(u_{m}, u_{n}\right)}|z|=(n-m)+$ $\sum_{z \in P d\left(u_{m}, u_{n}\right)}|z|=(n-m)+(n-m+1)=2 n-2 m+1$.
$\mathfrak{C}_{d}\left(u_{1}, u_{m}\right)=\mathfrak{C}_{d}\left(u_{m}, u_{n}\right)=2 m-1+2 n-2 m+1=$ $2 n$
$\mathfrak{C}_{d}\left(u_{1}, u_{n}\right)=d\left(u_{1}, u_{n}\right)+\sum_{z \in P d\left(u_{1}, u_{n}\right)}|z|=(n-1)+n=2 n-$ 1

From equation (1) and (2), we obtain $\mathfrak{V}_{d}\left(u_{1}, u_{n}\right)=\mathfrak{V}_{d}\left(u_{1}, u_{m}\right)+$ $\mathfrak{C}_{d}\left(u_{m}, u_{n}\right)$.

Theorem 4.3: For any graph G, and for any $u \neq v$, and $\mathfrak{C}_{d}(u, v)=3$ if and only if there exists atmost one edge between u and v.
Proof: If $u, v \in V(G)$ and $(u, v) \in E(G)$ then $d(u, v)=1$. Therefore $\mathfrak{C}_{d}(u, v)=d(u, v)+\sum_{w \in P d(u, v)}|w|=1+2=3$. Conversely, by the definition of coupling distance we have $d(u, v)+\sum_{w \in P d(u, v)}|w|=3$. Every path contains two end points. Hence the value of $\sum_{w \in P d(u, v)}|w|=2$ and $d(u, v)=1$ is the only combination for which $\mathfrak{C}_{d}(u, v)=3$. This implies there exists at most one edge between u and v.

5. ©-Eccentricity

Definition 5.1: Let u be the vertex in a connected graph G. The coupling eccentricity or \mathfrak{C}-eccentricity of u is the coupling distance
to the vertex farthest from u. Thus $\mathfrak{C} e(u)=\max \left\{\mathfrak{C}_{d}(u, v): v \in V\right\}$. A \mathfrak{C}-eccentric vertex $\mathbb{C} E(u)=\left\{v \in V: \mathfrak{C}_{d}(u, v)=\mathfrak{C} e(u)\right\}$.

Definition 5.2: The \mathfrak{C}-radius (coupling radius) and \mathfrak{C}-diameter (coupling diameter) is defined by $\mathfrak{C r a d}(G)=\min \{\mathbb{C} e(u): u \in V\}$ and $\mathfrak{C} \operatorname{diam}(G)=\max \{\mathscr{C} e(u): u \in V\}$ respectively. u is called a coupling central vertex if $\mathfrak{C e} e(u)=\mathbb{C} \operatorname{rad}(G) . v$ is called a coupling peripheral vertex if $\mathbb{C} e(v)=\mathbb{C} \operatorname{diam}(G)$. The coupling center of $G \mathbb{C} R(G)$ is the set of all coupling central vertices. The coupling periphery of G $\mathfrak{C} P(G)$ is the set of all coupling peripheral vertices. A graph G is said to be coupling self-centered if and only if $\mathfrak{C} \operatorname{rad}(G)=\mathfrak{C} d i a m(G)$.

Table 5.1: From the Figure-1, we tabulate \mathfrak{C}-eccentricity and \mathfrak{C}-eccentric vertex of v.

Vertex $V(G)$	$v \in$	\mathfrak{C}-eccentricity $\mathfrak{G e}(v)$
v_{1}	5	\mathfrak{G}-eccentric vertex $\mathfrak{C} E(v)$
v_{2}	7	$\left\{v_{4}, v_{5}, v_{6}\right\}$
v_{3}	5	$\left\{v_{4}\right\}$
v_{4}	7	$\left\{v_{2}, v_{5}\right\}$
v_{5}	7	$\left\{v_{2}, v_{5}\right\}$
v_{6}	5	$\left\{v_{4}\right\}$

$\mathfrak{C r a d}(G)=5, \mathfrak{C d i a m}(G)=7, \mathfrak{C} R(G)=\left\{v_{1}, v_{3}, v_{6}\right\}$ and $\mathfrak{C} P(G)=$ $\left\{v_{2}, v_{4}, v_{5}\right\}$.

Observation 5.1:

(i) $\operatorname{ecc}(u)<\mathfrak{C} e(u)$ for any vertex $u \in V(G)$.
(ii) $\operatorname{rad}(G)<\operatorname{Crad}(G)$.
(iii) $\operatorname{diam}(G)<\mathfrak{C} \operatorname{diam}(G)$.
(iv) The eccentric vertex $E(u)$ is equal to the coupling eccentric vertex $\mathfrak{C} E(u)$ for any graph G.

Table 5.2: The coupling distance parameters of some standard graphs are given in the table below.

Graph	Figure	$\operatorname{rad}(\mathrm{G})$	diam(G)	R(G)	P(G)
Bull Graph		5	7	$\begin{array}{ll} \left\{v_{3},\right. & v_{4}, \\ v_{5\}} \end{array}$	$\left\{u_{1}, v_{2}\right\}$
Butterfly Graph		3	5	$\left\{v_{3}\right\}$	$\begin{aligned} & \left\{v_{1}, v_{2},\right. \\ & \left.v_{4}, v_{55}\right\} \end{aligned}$
Diamond Graph		3	5	$\left\{v_{1}, v_{4}\right\}$	$\left\{v_{2}, v_{3}\right\}$
Durer Graph		7	9	$\begin{array}{ll} \left\{\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{5}, & v_{8}, \\ v_{11}, & v_{12} \end{array}\right\} \end{array}$	$\begin{array}{ll} \left\{v_{3},\right. & v_{4} \\ v_{6}, & v_{7}, \\ v_{9}, & v_{10} \end{array}$
Bidiaskis cube		7	7	$\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}, & v_{6}, \\ v_{7} & v_{8}, \\ v_{9}, & v_{10}, \\ v_{11}, & \left.v_{12}\right\} \end{array}$	$\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4} \\ v_{5}, & v_{6}, \\ v_{7} & v_{8}, \\ v_{9}, & v_{10}, \\ v_{11}, & \left.v_{12}\right\} \end{array}$
Chvatal Graph		5	5	$\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4} \\ v_{5}, & v_{6}, \\ v_{7}, & v_{8}, \\ v_{9}, & v_{10}, \\ v_{11}, & \left.v_{12}\right\} \end{array}$	$\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}, & v_{6}, \\ v_{7} & v_{8}, \\ v_{9}, & v_{10}, \\ v_{11}, & \left.v_{12}\right\} \end{array}$
Franklin Graph		7	7	$\begin{array}{ll} \left\{\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}, & v_{6}, \\ v_{7}, & v_{8}, \\ v_{9}, & v_{10}, \\ v_{11}, & \left.v_{12}\right\} \end{array}, \$ l\right. \end{array}$	$\begin{array}{ll} \left\{v_{1,},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}^{5} & v_{6}, \\ v_{7}, & v_{8}, \\ v_{9}, & v_{10}, \\ v_{11}, & \left.v_{12}\right\} \end{array}$

Graph	Figure	$\operatorname{rad}(\mathrm{G})$	diam(G)	R(G)	$\mathrm{P}(\mathrm{G})$
Frucht Graph		7	9	$\left\{v_{1}\right.$, v_{2}, v_{3}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, $\left.v_{12}\right\}$	$\begin{aligned} & \left\{v_{4}, v_{5},\right. \\ & \left.v_{6}, v_{9}\right\} \end{aligned}$
Golomb Graph		5	7	$\begin{aligned} & \left\{v_{2}, v_{5},\right. \\ & \left.v_{6}, v_{7}\right\} \end{aligned}$	$\begin{aligned} & \left\{v_{1}, \quad v_{3},\right. \\ & v_{4}, \quad v_{8}, \\ & \left.v_{9}, v_{10}\right\} \end{aligned}$
Herschel Graph		7	9	$\left\{v_{1}\right.$, v_{2}, v_{3}, v_{4}, v_{6}, v_{8}, v_{9}, v_{10}, $\left.v_{11}\right\}$	$\left\{v_{5}, v_{7}\right\}$
Moser Spindle Graph		5	5	$\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}, & v_{6}, \\ v_{7\}} & \end{array}$	$\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}, & v_{6}, \\ \left.v_{7}\right\} & \end{array}$
Wagner Graph		5	5	$\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}, & v_{6}, \\ v_{7}, & \left.v_{8}\right\} \end{array}$	$\begin{array}{ll} \begin{cases}\left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}, & v_{6}, \\ v_{7}, & v_{8}\end{cases} \end{array}$
Petersen Graph		5	5	$\begin{array}{ll} \left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}, & v_{6}, \\ v_{7}, & v_{8}, \\ v_{9}, & \left.v_{10}\right\} \end{array}$	$\begin{array}{ll} \hline\left\{v_{1},\right. & v_{2}, \\ v_{3}, & v_{4}, \\ v_{5}, & v_{6}, \\ v_{7}, & v_{8}, \\ v_{9}, & \left.v_{10}\right\} \end{array}$

The following observations are made from Table 5.2.

Observation 5.2:

(i) The regular graph, Bidiakis cube, chvatal graph, franklin graph, moser spindle graph, wagner graph and petersen graph are all coupling self-centered graphs.
(ii) The butterfly graph has a unique center $\mathfrak{C} R(G)$.
(iii) In a chvatal graph $\mathfrak{C}_{d}(u, v)=\left\{\begin{array}{lr}3, & \text { if }(u, v) \in E(G) \\ 5, & \text { otherwise }\end{array}\right.$
(iv) The induced subgraph of coupling periphery of golomb graph is a null graph.
(v) For any coupling self-centered graph $\mathfrak{C} R(G)=\mathfrak{C} P(G)=V(G)$.

Theorem 5.1: For any graph $G(V, E), u \in V, \mathfrak{C} e(u)=2 \operatorname{ecc}(u)+1$.
Proof: The proof follows from the definition of eccentricity of a vertex. The eccentricity $\operatorname{ecc}(u)$ of a vertex u is the length of the path between u and the farthest vertex v from u in the graph. Therefore, path length is equal to $\operatorname{ecc}(u)$. Now let us consider a vertex u and v if the length of path is 1 . They are adjacent and $\mathfrak{C}_{d}(u, v)=3$ as there are two vertices on the edge. Similarly, if the path length is 2 there will be three vertices on the path u, w, v where w is the intermediate vertex. Therefore $\mathfrak{C}_{d}(u, v)=5$ for a path of length 2 . Now for a path of length n there will be $n+1$ vertices in the path. Therefore, the coupling eccentricity for a path of length n is given by
$\mathfrak{c}_{d}(u, v)=n+n+1$.
$\mathfrak{r}_{d}(u, v)=\operatorname{ecc}(u)+\operatorname{ecc}(u)+1$.
$\mathfrak{c}_{d}(u, v)=2 \operatorname{ecc}(u)+1$.
$\mathfrak{C}_{d}(u, v)=\mathfrak{C} e(u)$.
Theorem 5.2: If coupling eccentricity of any vertex of a graph G is either r_{1} or r_{2} then $\mathfrak{C} R(G)=V(G)-\mathfrak{C} P(G)$.

Proof: Let $\mathfrak{C e}\left(v_{n}\right)=r_{1}$ or $\mathfrak{C} e\left(v_{n}\right)=r_{2} \forall v_{n} \in V(G)$, where $\left(r_{1}<r_{2}\right)$ then $\operatorname{Vrad}(G)=r_{1}$ and $\mathfrak{G d i a m}(G)=r_{2}$. Some of the vertices belongs to $\mathbb{C} R(G)$ say s vertices and some of the vertices belongs to $\mathbb{C} P(G)$
say t vertices. Hence $s+t=n$ (number of vertices in G). Therefore $\mathfrak{C} R(G)+\mathfrak{c} P(G)=V(G)$. Hence the result.

Theorem 5.3: For any graph G which is not coupling self-centered-if $\mathfrak{C} \operatorname{diam}(G)=\mathfrak{C r a d}(G)+t$ then t is a positive even integer.

Proof: Let $\mathbb{C} \operatorname{diam}(G)=t=2 t_{1}+1$ by Theorem 5.1.
Let $\operatorname{Grad}(G)=r=2 r_{1}+1$.
$\mathfrak{C} \operatorname{diam}(G)-\operatorname{crad}(G)=\left[2\left(d_{1}\right)+1\right]-\left[2\left(r_{1}\right)+1\right]$
$\mathfrak{C} \operatorname{diam}(G)-\mathfrak{C r a d}(G)=2\left(d_{1}-r_{1}\right)$
$\mathfrak{C d i a m}(G)-\mathfrak{C r a d}(G)=t$ (where t is an even positive integer).
Therefore, $\mathfrak{C} d i a m(G)=\mathfrak{C r a d}(G)+r$.
Observation 5.3: The following statements are true for a complete graph K_{n}.
(i) For any complete graph $K_{n} \forall n>1, \mathfrak{v} \operatorname{rad}(G)=\mathfrak{C} \operatorname{diam}(G)=3$.
(ii) K_{n} is coupling self-centered.

Theorem 5.4: The vertex set $V(G)$ forms the coupling center and coupling periphery of K_{n}, where $n>1$.

Proof: For a complete graph K_{n}, the coupling distance between any two vertices is 3 . Since the degree of every vertex $v \in V(G)$ is $n-1$. Therefore, the coupling eccentricity of every vertex v is constant $\mathfrak{C} e(v)=3$ and all the vertices adjacent to v are the coupling eccentric vertices of v. Since we have $\operatorname{deg}(v)=n-1$ all the vertices are eccentric vertices and the coupling eccentricity of every $v \in V(G)$ being constant. The coupling radius and coupling diameter of K_{n} is same, hence K_{n} is self-centered. Therefore $\mathfrak{C} R(G)=\mathfrak{C} P(G)=V(G)$.

Observation 5.4: For any Path P_{n},
(i) $\mathfrak{C} R\left(P_{n}\right)$ has unique couple center if n is odd.
(ii) $\mathfrak{C} R\left(P_{n}\right)$ contains a pair of coupling central vertices if n is even.
(iii) $\mathfrak{C} P\left(P_{n}\right)$ has only end vertices.

Theorem 5.5: For any path graph P_{n}, where $n \geq 2$

$$
\operatorname{Vrad}(G)= \begin{cases}n, & \text { if } n \text { is odd } \\ n+1, & \text { ifn is even }\end{cases}
$$

Proof: Case(i): If n is odd. From the Observation-4.4(i) any odd path P_{n} contains a unique vertex which forms the coupling center of the graph. Then the pendant vertices v_{1} and v_{n} from the coupling eccentric vertices of the unique vertex v_{i}, which forms the coupling center. The distance $d\left(v_{i}, v_{1}\right)=d\left(v_{i}, v_{n}\right)=\frac{n-1}{2}$. Then from the Observation-3.1

Case (i) :if $d(u, v)=n$, then $\mathfrak{r}_{d}(u, v)=2 n+1$.

$$
\text { Therefore } \mathfrak{C}_{d}\left(v_{i}, v_{1}\right)=\mathfrak{c}_{d}\left(v_{i}, v_{n}\right)=2\left(\frac{n-1}{2}\right)+1=n
$$

Case (ii): If n is even we know-from the Observation-5.4(ii) that there is a pair of intermediate adjacent vertices which forms the coupling center of P_{n}. Let v_{p} and v_{q} be the intermediate adjacent vertices of the path $\mathfrak{C} R\left(P_{n}\right)=\left\{v_{p}, v_{q}\right\}$. Then we have $\mathfrak{C} e\left(v_{p}\right)=\mathfrak{C} e\left(v_{q}\right)$. The coupling eccentric vertices of v_{p} and v_{q} are v_{n} and v_{1} respectively. Since distance between the central vertices and the pendant vertices must be same, $d\left(v_{p}, v_{n}\right)=d\left(v_{q}, v_{1}\right)$. Hence $d\left(v_{p}, v_{n}\right)=d\left(v_{q}, v_{1}\right)=\frac{n}{2}$. But from the observation-3.1(i), if $d(u, v)=n$ then $\mathfrak{C} d(u, v)=2 n+1$. Therefore if $d\left(v_{p}, v_{n}\right)=d\left(v_{q}, v_{1}\right)=\frac{n}{2} \quad$ then $\quad \mathfrak{c} d\left(v_{p}, v_{n}\right)=$ $\mathfrak{c} d\left(v_{q}, v_{1}\right)=2\left(\frac{n}{2}\right)+1$. Hence $\mathfrak{v r a d}(G)=n+1$.

Theorem 5.6: For path graph P_{n}, the coupling diameter is $\mathfrak{C} \operatorname{diam}\left(P_{n}\right)=2 n-1$.

Proof: For any path P_{n} the diameter is the distance between the end vertices of the path. A path is a trial in which vertices are not repeated and has n vertices and $n-1$ edges. Therefore, the distance between the two end vertices v_{1} and v_{n} is given by $d\left(v_{1}, v_{n}\right)=n-1$, which is equal to the total number of edges. Now, from the observation-3.1(i) if $d\left(v_{1}, v_{n}\right)=n-1$, then $\mathfrak{C} d\left(v_{1}, v_{n}\right)=2(n-1)+$ $1=2 n-2+1=2 n-1$. Hence $\mathfrak{v} \operatorname{diam}\left(P_{n}\right)=2 n-1$.

Observation 5.5: For any wheel graph W_{n}
(i) W_{4} is coupling self-centered graph.
(ii) When $n \geq 5$ there exist a unique coupling center $\left|\mathfrak{G} R\left(W_{n}\right)\right|=1$ and $\left|\mathbb{C} P\left(W_{n}\right)\right|=n-1$.

Theorem 5.7: For a wheel graph W_{n}, where $n>4$ ©rad $=3$ and \mathfrak{c} diam $=5$.

Proof: Let W_{n} be the wheel graph where $V\left(W_{n}\right)=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots v_{c}, \ldots, v_{i}\right\}$. Let v_{c} be the vertex adjacent to all other vertices of a graph. Therefore $\operatorname{deg}\left(v_{c}\right)=n-1$ and degree of all other vertices $\operatorname{deg}\left(v_{i}\right)=3$ where $v_{i} \in V\left(W_{n}\right)-\left\{v_{c}\right\}$. Since every vertex of $V\left(W_{n}\right)-\left\{v_{c}\right\}$ is incident on the vertex v_{c} the distance $d\left(v_{c}, v_{i}\right)=1$ and $\mathfrak{C} d\left(v_{c}, v_{i}\right)=2(1)+1=3$ (From the Observation-3.1(i)). Now consider any two vertices v_{1} and v_{2} other than v_{c} then shortest distance between them will be either path P_{1} or $P_{2} . P_{1}$ is given by $v_{1}-v_{2}$ if v_{1} and v_{2} are adjacent. P_{2} is given by $v_{1}-v_{c}-v_{2}$ if v_{1} and v_{2} are not adjacent.

Case(i): Consider $P_{1}, d\left(v_{1}, v_{2}\right)=1$ and $\mathfrak{c} d\left(v_{1}, v_{2}\right)=2(1)+1=3$ (by Observation- 3.1(i)).

Case(ii): Consider $P_{2}, d\left(v_{1}, v_{2}\right)=2$ and $\mathfrak{c} d\left(v_{1}, v_{2}\right)=2(2)+1=$ 5(by Observation-3.1(i)). Now the coupling eccentric values of any vertex $v_{i} \in V\left(W_{n}\right)$ is given by $\mathfrak{C} e\left(v_{i}\right)=3$ or 5 . Therefore $\operatorname{Crad}\left(W_{n}\right)=$ 3 and $\mathfrak{C d i a m}\left(W_{n}\right)=5$

Theorem 5.8: For a star graph S_{n} where $n \geq 3$
(i) $\left|\mathscr{C} R\left(S_{n}\right)\right|=1$.
(ii) $v_{i} \in \mathscr{C} P\left(S_{n}\right)$ where v_{i} belongs to the set of all pendant vertices of S_{n} and $\left|\mathbb{C} P\left(S_{n}\right)\right|=n-1$.

Proof: Case(i): Every star graph S_{n}, where $n \geq 3$ contains a central vertex and $n-1$ pendant vertices. The degree of the central vertex is $n-1$ and the degree of pendant vertices is one. Now the distance between the central vertex v_{c} and pendant vertex v_{i} given by $d\left(v_{c}, v_{i}\right)=1$. Therefore $\mathfrak{C}\left(v_{c}, v_{i}\right)=3$. The shortest distance between any two pair of pendant vertices is given by $d\left(v_{1}, v_{2}\right)=2$. Therefore $\mathfrak{C} d\left(v_{1}, v_{2}\right)=2(2)+1=5 . \mathfrak{C} e\left(v_{c}\right)=3$ being the smallest eccentric
value of S_{n}, v_{c} becomes a vertex with a unique coupling eccentric value. Hence $\left|\mathbb{C} R\left(S_{n}\right)\right|=1$.

Case(ii): In case(i) we see that $\left|\mathfrak{C} R\left(S_{n}\right)\right|=1 . v_{c}$ is the unique vertex with the least eccentric value and all the other remaining pendant vertices $v_{i} \in V\left(S_{n}\right)-\left\{v_{c}\right\}$ have the same coupling eccentricity $\mathfrak{C e}\left(v_{i}\right)=5$. Then $\mathfrak{C d i a m}\left(S_{n}\right)=5$ and $\mathfrak{C r a d}\left(S_{n}\right)=3$. Therefore, the set of all end vertices of S_{n} form the coupling periphery of S_{n}.

Observation 5.6: For any cycle C_{n}
(i) C_{n} is coupling self-centered.
(ii) $|\mathfrak{C} R(G)|=|\mathscr{C} P(G)|=n$ for any cycle C_{n}.
(iii) $V\left(C_{n}\right) \in \mathfrak{C} R(G), V\left(C_{n}\right) \in \mathfrak{C} P(G), V\left(C_{n}\right)=\mathfrak{C} R\left(C_{n}\right)=\mathfrak{C} P\left(C_{n}\right)$.

Theorem 5.9: For any cycle C_{n}

$$
\operatorname{Grad}\left(C_{n}\right)=\operatorname{Cdiam}\left(C_{n}\right)=\left\{\begin{array}{cc}
n, & \text { if } n \text { is odd } \\
n+1, & \text { if } n \text { is even }
\end{array}\right.
$$

Proof: Case(i): Let C_{n} be a cycle graph where n is odd. For every vertex $v_{i} \in V\left(C_{n}\right)$ the farthest vertex lies at a distance of $\frac{n-1}{2}$ from it. Therefore $e\left(v_{i}\right)=\frac{n-1}{2}$. Therefore, coupling eccentricity of every vertex of C_{n} is given by $\mathfrak{c} e\left(v_{i}\right)=2\left(\frac{n-1}{2}\right)+1=n$. Therefore, for an odd cycle which is also self-centered. $\mathfrak{C r a d}\left(C_{n}\right)=\mathfrak{C d i a m}\left(C_{n}\right)=n$.

Case(ii): For an even cycle C_{n}, where $v_{i} \in V\left(C_{n}\right)$ the vertex farthest from v_{i} lies at a distance of $\frac{n}{2}$ from it. Therefore $e\left(v_{i}\right)=\frac{n}{2}$. Now the coupling eccentricity of every vertex of C_{n} is given by $\mathfrak{C} e\left(v_{i}\right)=$ $2\left(\frac{n}{2}\right)+1=\mathrm{n}+1$. Hence for an even cycle which is also self-centered, $\operatorname{Crad}\left(C_{n}\right)=\mathfrak{C d i a m}\left(C_{n}\right)=n+1$.

Observation 5.7: For a friendship graph F_{n}
(i) $\left|\mathbb{C} R\left(F_{n}\right)\right|=1$.
(ii) $\left|\mathscr{C} P\left(F_{n}\right)\right|=n-1$.
(iii) $v_{i} \in \mathscr{C} P\left(F_{n}\right)$ where $\operatorname{deg}\left(v_{i}\right)=1$ and $v_{i} \in F_{n}$.

Theorem 5.10: For any friendship graph $F_{n}, \operatorname{crad}\left(F_{n}\right)=3$ and $\mathfrak{C} \operatorname{diam}\left(F_{n}\right)=5$.

Proof: We can obtain F_{n} by joining ' n ' C_{3} cycle graph with a common vertex. The ' n ' in F_{n} denotes the number of C_{3} cycles in F_{n}. There are $2 n+1$ vertices and $3 n$ edges in F_{n}. The graph F_{1} is copy of cycle C_{3}. The friendship graph F_{2} is obtained by joining two C_{3} cycles with a common vertex. Let $v_{c} \in V\left(F_{n}\right)$ be the vertex common for every cycle C_{3} in F_{n}. Then $\operatorname{deg}\left(v_{c}\right)=2 n$. Since v_{c} is adjacent to every vertex $v_{i} \in V\left(F_{n}\right)-v_{c}, d\left(v_{c}, v_{i}\right)=1$ and $\mathfrak{C} d\left(v_{c}, v_{i}\right)=3$. Let v_{i}, $\mathrm{v}_{\mathrm{j}} \in V\left(F_{\mathrm{n}}\right)-\left\{\mathrm{v}_{\mathrm{c}}\right\}$ be the adjacent vertices. Therefore $d\left(v_{1}, v_{2}\right)=1$, $\mathfrak{C} d\left(v_{1}, v_{2}\right)=3, v_{1}, v_{2} \neq v_{c}$ and $\left(v_{1}, v_{2}\right) \in E\left(F_{n}\right)$. The other possibility being $\left(v_{1}, v_{2}\right) \notin E\left(F_{n}\right)$. Then the distance between v_{1} and v_{2} is given by the path $v_{1}-v_{c}-v_{2}$ since v_{c} is adjacent to all vertices of F_{n}. Now $d\left(v_{1}, v_{2}\right)=2$ and $\mathfrak{C} d\left(v_{1}, v_{2}\right)=5$ where $\left(v_{1}, v_{2}\right) \notin E\left(F_{n}\right)$ and $v_{1}, v_{2} \neq$ v_{c}. Hence, we have $\mathfrak{C} e(v)=3$ or 5 where $v \in V\left(F_{n}\right)$. Therefore $\mathfrak{G r a d}\left(F_{n}\right)=3$ and $\mathfrak{C d i a m}\left(F_{n}\right)=5$.

Acknowledgements

The authors are indebted to the reviewers for their insightful comments and suggestions.

References

[1]. Buckley, F., \& Harary, F. (1990). Distance in graphs (Vol. 2). Redwood City: Addison-Wesley.
[2]. Chartrand, G., Johns, G. L., \& Tian, S. (1993). Detour distance in graphs. In Annals of discrete mathematics (Vol. 55, pp. 127136). Elsevier.
[3]. Harary, F. (2001). Graph theory, Narosa Publ. House, New Delhi.
[4]. Janakiraman, T. N., Bhanumathi, M., \& Muthammai, S. (2010). Eccentric domination in graphs. International Journal of Engineering Science, Advanced Computing and Bio Technology, 1(2), 55-70.
[5]. Kathiresan, K. M., Marimuthu, G., \& West, S. (2007). Superior distance in graphs. Journal of combinatorial mathematics and combinatorial computing, 61, 73.
[6]. Kathiresan, K. M., \& Sumathi, R. (2009). A study on signal distance in graphs. Algebra, Graph Theory, Appl, 50-54.
[7]. Kotzig, A. (1975). Degrees of vertices in a friendship graph. Canadian Mathematical Bulletin, 18(5), 691-693.
[8]. Rényi, A., \& Sós, V. T. (1966). On a problem of graph theory. Studia Sci. Math. Hungar, 1, 215-235.
[9]. Veeranjaneyulu, J., \& Varma, P. L. N. (2019). Circular ddistance and path graphs. International Journal of Recent Technology and Engineering, 7, 219-223.

[^0]: * P.G and Research Department of Mathematics, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli-620020, Tamil Nadu, India; Email: fouzanriyaz@gmail.com
 \dagger P.G and Research Department of Mathematics, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli-620020, Tamil Nadu, India; Email: amismayil1973@yahoo.co.in)

