109 research outputs found

    Photoemission of ferrocene, decamethylferrocene, and decamethylferrocene-bis(7,7,8,8-tetracyano-p-quinodimethane)

    Get PDF
    Journal ArticleWe present the first vacuum ultraviolet photoemission measurements of condensed ferrocene, decamethylferrocene, and the highly conductive charge transfer complex decamethylferrocene-7,7,8,8-tetracyano-p-quinodimethane, at photon energies from 7.7 to 21.2 eV. We compare the electronic spectra of these compounds and discuss substituent effects. The first ionization potentials are 6.1, 5.1, and 5.3 eV, respectively. The charge transfer complex is a semiconductor with its highest occupied states 0.8 eV below Er. The electron scattering lengths in ferrocene and decamethylferrocene are ~ 60 A. for electrons 0.5 eV above the vacuum level and decrease to ~ 2.5 A(o). as the energy is increased to 16 eV. From this result we estimate the electron affinity of solid ferrocene and decamethylferrocene. to be about 1 eV

    Plasmon dispersion in quasi-one and one-dimensional systems with non-magnetic impurities

    Full text link
    We calculate the plasmon dispersion in quasi-one-dimensional quantum wires, in the presence of non-magnetic impurities, taking into consideration the memory function formalism and the role of the forward scattering. The plasma frequency is reduced by the presence of impurities. We also calculate, analytically, the plasmon dispersion in the Born approximation, for the scattering of the electrons by the non-magnetic impurities. We compare our result with the numerical results of Sarma and Hwang.Comment: 12 pages, no figures, Physica E, 40, 474, (2008

    Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    Get PDF
    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)2PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray induced photoemission spectroscopy turns out to be a valuable non-destructive diagnostic tool. We show that the observation of generic one-dimensional signatures in photoemission spectra of the valence band close to the Fermi level can be strongly affected by surface effects. Especially, great care must be exercised taking evidence for an unusual one-dimensional many-body state exclusively from the observation of a pseudogap.Comment: 11 pages, 12 figures, v2: minor changes in text and figure labellin

    Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale

    Get PDF
    Coherent X-ray diffraction techniques play an increasingly significant role in imaging nanoscale structures which range from metallic and semiconductor samples to biological objects. The conventional knowledge about radiation damage effects caused by ever higher brilliance X-ray sources has to be critically revised while studying nanostructured materials

    The L 98-59 System: Three Transiting, Terrestrial-Size Planets Orbiting A Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R⊕ to 1.6 R⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system

    The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R ⊕ to 1.6 R ⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system
    corecore