34 research outputs found

    Fulfillment of the Brazilian Agenda of Priorities in Health Research

    Get PDF
    This commentary describes how the Brazilian Ministry of Health's (MoH) research support policy fulfilled the National Agenda of Priorities in Health Research (NAPHR). In 2003, the MoH started a democratic process in order to establish a priority agenda in health research involving investigators, health managers and community leaders. The Agenda was launched in 2004 and is guiding budget allocations in an attempt to reduce the gap between scientific knowledge and health practice and activities, aiming to contribute to improving Brazilian quality of life. Many strategies were developed, for instance: Cooperation Agreements between the Ministry of Health and the Ministry of Science and Technology; the decentralization of research support at state levels with the participation of local Health Secretariats and Science and Technology Institutions; Health Technology Assessment; innovation in neglected diseases; research networks and multicenter studies in adult, women's and children's health; cardiovascular risk in adolescents; clinical research and stem cell therapy. The budget allocated by the Ministry of Health and partners was expressive: US$419 million to support almost 3,600 projects. The three sub-agenda with the higher proportion of resources were "industrial health complex", "clinical research" and "communicable diseases", which are considered strategic for innovation and national development. The Southeast region conducted 40.5% of all projects and detained 59.7% of the resources, attributable to the concentration of the most traditional health research institutes and universities in the states of São Paulo and Rio de Janeiro. The second most granted region was the Northeast, which reflects the result of a governmental policy to integrate and modernize this densely populated area and the poorest region in the country. Although Brazil began the design and implementation of the NAPHR in 2003, it has done so in accordance with the 'good practice principles' recently published: inclusive process, information gathering, careful planning and funding policy, transparency and internal evaluation (an external independent evaluation is underway). The effort in guiding the health research policy has achieved and legitimated an unprecedented developmental spurt to support strategic health research. We believe this experience is valuable and applicable to other countries, but different settings and local political circumstances will determine the best course of action to follow

    The Complex Puzzle of Interactions Among Functional Food, Gut Microbiota, and Colorectal Cancer

    Get PDF
    Colorectal cancer exerts a strong influence on the epidemiological panorama worldwide, and it is directly correlated to etiologic factors that are substantiated by genetic and environmental elements. This complex mixture of factors also has a relationship involving the structural dependence and composition of the gut microbiome, leading to a dysbacteriosis process that may evolve to serious modifications in the intestinal lining, eventually causing the development of a neoplasm. The gastrointestinal tract presents defense strategies and immunological properties that interfere in intestinal permeability, inhibiting the bacterial translocation, thus maintaining the integrity of intestinal homeostasis. The modulation of the intestinal microbiome and the extinction of risk factors associated with intestinal balance losses, especially of environmental factors, make cell and defense alterations impossible. This modulation may be conducted by means of functional foods in the diet, especially soluble fibers, polyunsaturated fatty acids, antioxidants and prebiotics that signal immunomodulatory effects in the intestinal microbiota, with preventive and therapeutic action for colorectal cancer. In summary, this review focuses on the importance of dietary modulation of the intestinal microbiota as an instrument for dysbacteriosis and, consequently, for the prevention of colorectal cancer, suggesting anticarcinogenic, and antiangiogenic properties. Among the intestinal modulating agents considered here are functional foods, especially flaxseed, oat and soy, composing a Bioactive Food Compound

    Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    Get PDF
    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1%of the total study area).Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forestmanagement, natural regeneration of second-growth forests provides a low-costmechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. © 2016 The Authors

    Biodiversity recovery of Neotropical secondary forests

    Get PDF
    Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes. Copyright © 2019 The Authors, some rights reserved

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore