81 research outputs found

    Association of preterm birth with prescription of psychotropic drugs in adolescence and young adulthood

    Get PDF
    Importance Individuals born preterm have increased risk of mental health impairment compared with individuals born at term. The associations between preterm birth and attention-deficit/hyperactivity disorder and autism are well established; for depression, anxiety, psychotic and bipolar disorder, studies show divergent results. Objective To compare the prescription of psychotropic drugs in adolescence and young adulthood between those born preterm and those born at term. Design, Setting, and Participants This cohort study used registry data to identify all Norwegians born after 23 weeks of completed gestation between 1989 and 1998. Included individuals were those without registered birth defects, alive at age 10 years, and with available maternal data. Individuals were followed up from 2004 to 2016. Psychotropic drug prescriptions received from age 10 to 23 years were compared between preterm groups and peers born at term. Individuals were compared with their siblings to control for shared family confounding. Data analyses were performed from August 2018 through February 2020. Exposures Gestational age at birth (GA) was categorized in 4 groups: extremely preterm (GA, 23 weeks and 0 days to 27 weeks and 6 days), very preterm (GA, 28 weeks and 0 days to 31 weeks and 6 days), moderately or late preterm (GA, 32 weeks and 0 days to 36 weeks and 6 days), and full term (GA, 37 weeks and 0 days to 44 weeks and 6 days). Main Outcomes and Measures Prescriptions of psychotropic drugs (ie, prescriptions specifically of psychostimulants, antidepressants, anxiolytics, hypnotics or sedatives, or antipsychotics or prescriptions of any of these 5 drugs) among preterm groups were compared with prescriptions among peers born at term and among siblings. Results Among 505 030 individuals (259 545 [51.4%] males; mean [SD] birth weight, 3533 [580] g), 762 individuals (0.2%) were extremely preterm, 2907 individuals (0.6%) were very preterm, 25 988 individuals (5.1%) were moderately or late preterm, and 475 373 individuals (94.1%) were full term. Individuals born preterm had increased risk of psychotropic drug prescription, with a dose-response association between GA and prescription. The extremely preterm group had higher rates of prescription for all drug types compared with peers born at term, with odds ratios from 1.7 (95% CI, 1.4-2.1) for antidepressants to 2.7 (95% CI, 2.1-3.4) for psychostimulants. The elevated odds of prescription of all types were less pronounced in the moderately to late preterm group, including odds ratios of 1.1 (95% CI, 1.0-1.1) for antidepressants and 1.2 (95% CI, 1.1-1.2) for psychostimulants. The increases in odds were smaller in the sibling comparison, and increases were not significant for several groups. For example, the OR for any prescription in the sibling analysis was 1.8 (95% CI, 1.2-2.8) in the very preterm group and 1.0 (95% CI, 0.9-1.1) in the moderately or late preterm group. Conclusions and Relevance This cohort study found higher rates of prescription of psychotropic drugs throughout adolescence and young adulthood among individuals with all degrees of preterm birth compared with those born at term. These results provide further evidence for an increased risk of mental health impairment among individuals born preterm and suggest that this is not restricted to the most preterm groups.publishedVersio

    Gestational age and the risk of autism spectrum disorder in Sweden, Finland, and Norway: A cohort study

    Get PDF
    Introduction The complex etiology of autism spectrum disorder (ASD) is still unresolved. Preterm birth ( Author summaryWhy was this study done? Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent impairments in social communication and restricted and repetitive behaviors. The etiology remains unresolved. Length of gestation, including preterm birth, has been linked to risk of ASD, but reliable estimates of risks for the whole range of gestational ages (GAs) are lacking. The primary objective of this study was to provide a detailed and robust description of ASD risk across the entire range of GA while taking fetal sex and size at birth into account. What did the researchers do and find? This study was based on population-based data from national medical registries in three Nordic countries-Sweden, Finland, and Norway-and included 3,526,174 singletons born 1995 to 2015. Relative risks (RRs) of ASD by GA at birth were estimated with log binominal regression. The RR of ASD increased by each week of GA, pre- as well as postterm, from 40 to 24 weeks of gestation and from 40 to 44 weeks of gestation, independently of sex and birth weight for GA. What do these findings mean? On a population level, the risks of ASD were increased in children born either pre- or postterm, including children born close to week 40. We found that the risk of ASD increased weekly, with each week further away from 40 weeks of gestation.Peer reviewe

    Mortality Among Young Adults Born Preterm and Early Term in 4 Nordic Nations

    Get PDF
    IMPORTANCE Adverse long-term outcomes in individuals born before full gestation are not confined to individuals born at extreme gestational ages. Little is known regarding mortality patterns among individuals born in the weeks close to ideal gestation, and the exact causes are not well understood; both of these are crucial for public health, with the potential for modification of risk. OBJECTIVE To examine the risk of all-cause and noncommunicable diseases (NCD) deaths among young adults born preterm and early term. DESIGN, SETTING, AND PARTICIPANTS This multinational population-based cohort study used nationwide birth cohorts from Norway, Sweden, Denmark, and Finland for individuals born between 1967 and 2002. Individuals identified at birth who had not died or emigrated were followed up for mortality from age 15 years to 2017. Analyses were performed from June 2019 to May 2020. EXPOSURES Categories of gestational age (ie, moderate preterm birth and earlier [23-33 weeks], late preterm [34-36 weeks], early term [37-38 weeks], full term [39-41 weeks] and post term [42-44 weeks]). MAIN OUTCOMES AND MEASURES All-cause mortality and cause-specific mortality from NCD, defined as cancer, diabetes, chronic lung disease, and cardiovascular disease (CVD). RESULTS A total of 6 263 286 individuals were followed up for mortality from age 15 years. Overall, 339 403 (5.4%) were born preterm, and 3 049 100 (48.7%) were women. Compared with full-term birth, the adjusted hazard ratios (aHRs) for all-cause mortality were 1.44 (95% CI, 1.34-1.55) for moderate preterm birth and earlier; 1.23 (95% CI, 1.18-1.29) for late preterm birth; and 1.12 (95% CI, 1.09-1.15) for early-term birth. The association between gestational age and all-cause mortality were stronger in women than in men (P for interaction = .03). Preterm birth was associated with 2-fold increased risks of death from CVD (aHR, 1.89; 95% CI, 1.45-2.47), diabetes (aHR, 1.98; 95% CI, 1.44-2.73), and chronic lung disease (aHR, 2.28; 95% CI, 1.36-3.82). The main associations were replicated across countries and could not be explained by familial or individual confounding factors. CONCLUSIONS AND RELEVANCE The findings of this study strengthen the evidence of increased risk of death from NCDs in young adults born preterm. Importantly, the increased death risk was found across gestational ages up to the ideal term date and includes the much larger group with early-term birth. Excess mortality associated with shorter gestational age was most pronounced for CVDs, chronic lung disease, and diabetes.Peer reviewe

    Gestational age and the risk of autism spectrum disorder in Sweden, Finland, and Norway: A cohort study

    Get PDF
    Introduction The complex etiology of autism spectrum disorder (ASD) is still unresolved. Preterm birth (Conclusion In the current study, we observed that the RR of ASD increased weekly as the date of delivery diverged from 40 weeks, both pre- and postterm, independently of sex and size for GA. Given the unknown etiology of ASD and the lifelong consequences of the disorder, identifying groups of increased risk associated with a potentially modifiable risk factor is important.</div

    Gestational Age, Parent Education, and Education in Adulthood

    Get PDF
    BACKGROUND: Adults born preterm ( METHODS: This register-based cohort study included singletons born alive from 1987 up to 1992 in Denmark, Finland, Norway, and Sweden. In each study population, we investigated effect modification by parents' educational level (low, intermediate, high) on the association between gestational age at birth (25-44 completed weeks) and low educational attainment at 25 years (not having completed upper secondary education) using general estimation equations logistic regressions. RESULTS: A total of 4.3%, 4.0%, 4.8%, and 5.0% singletons were born preterm in the Danish (n = 331 448), Finnish (n = 220 095), Norwegian (n = 292 840), and Swedish (n = 513 975) populations, respectively. In all countries, both lower gestational age and lower parental educational level contributed additively to low educational attainment. For example, in Denmark, the relative risk of low educational attainment was 1.84 (95% confidence interval 1.44 to 2.26) in adults born at 28 to 31 weeks whose parents had high educational level and 5.25 (95% confidence interval 4.53 to 6.02) in adults born at 28 to 31 weeks whose parents had low educational level, compared with a reference group born at 39 to 41 weeks with high parental educational level. CONCLUSIONS: Although higher parental education level was associated with higher educational attainment for all gestational ages, parental education did not mitigate the educational disadvantages of shorter gestational age.Peer reviewe

    Preterm birth and asthma and COPD in adulthood : a nationwide register study from two Nordic countries

    Get PDF
    Background Preterm birth affects lungs in several ways but few studies have follow-up until adulthood. We investigated the association of the entire spectrum of gestational ages with specialist care episodes for obstructive airway disease (asthma and chronic obstructive pulmonary disease (COPD)) at age 18–50 years. Methods We used nationwide registry data on 706 717 people born 1987–1998 in Finland (4.8% preterm) and 1 669 528 born 1967–1999 in Norway (5.0% preterm). Care episodes of asthma and COPD were obtained from specialised healthcare registers, available in Finland for 2005–2016 and in Norway for 2008–2017. We used logistic regression to estimate odds ratios (ORs) for having a care episode with either disease outcome. Results Odds of any obstructive airway disease in adulthood for those born at <28 or 28–31 completed weeks were 2–3-fold of those born full term (39–41 completed weeks), persisting after adjustments. For individuals born at 32–33, 34–36 or 37–38 weeks, the odds were 1.1- to 1.5-fold. Associations were similar in the Finnish and the Norwegian data and among people aged 18–29 and 30–50 years. For COPD at age 30–50 years, the OR was 7.44 (95% CI 3.49–15.85) for those born at <28 weeks, 3.18 (95% CI 2.23–4.54) for those born at 28–31 weeks and 2.32 (95% CI 1.72–3.12) for those born at 32–33 weeks. Bronchopulmonary dysplasia in infancy increased the odds further for those born at <28 and 28–31 weeks. Conclusion Preterm birth is a risk factor for asthma and COPD in adulthood. The high odds of COPD call for diagnostic vigilance when adults born very preterm present with respiratory symptoms.Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ∼0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.publishedVersio

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Gestational age and the risk of autism spectrum disorder in Sweden, Finland, and Norway: A cohort study

    No full text
    Introduction The complex etiology of autism spectrum disorder (ASD) is still unresolved. Preterm birth (<37 weeks of gestation) and its complications are the leading cause of death of babies in the world, and those who survive often have long-term health problems. Length of gestation, including preterm birth, has been linked to ASD risk, but robust estimates for the whole range of gestational ages (GAs) are lacking. The primary objective of this study was to provide a detailed and robust description of ASD risk across the entire range of GAs while adjusting for sex and size for GA. Methods and findings Our study had a multinational cohort design, using population-based data from medical registries in three Nordic countries: Sweden, Finland, and Norway. GA was estimated in whole weeks based on ultrasound. Children were prospectively followed from birth for clinical diagnosis of ASD. Relative risk (RR) of ASD was estimated using log-binomial regression. Analyses were also stratified by sex and by size for GA. The study included 3,526,174 singletons born 1995 to 2015, including 50,816 (1.44%) individuals with ASD. In the whole cohort, 165,845 (4.7%) were born preterm. RR of ASD increased by GA, from 40 to 24 weeks and from 40 to 44 weeks of gestation. The RR of ASD in children born in weeks 22–31, 32–36, and 43–44 compared to weeks 37–42 were estimated at 2.31 (95% confidence interval [CI] 2.15–2.48; 1.67% vs 0.83%; p-value < 0.001), 1.35 (95% CI 1.30–1.40; 1.08% vs 0.83%; p-value < 0.001), and 1.37 (95% CI 1.21–1.54; 1.74% vs 0.83%; p-value < 0.001), respectively. The main limitation of this study is the lack of data on potential causes of pre- or postterm birth. Also, the possibility of residual confounding should be considered. Conclusion In the current study, we observed that the RR of ASD increased weekly as the date of delivery diverged from 40 weeks, both pre- and postterm, independently of sex and size for GA. Given the unknown etiology of ASD and the lifelong consequences of the disorder, identifying groups of increased risk associated with a potentially modifiable risk factor is important
    corecore