65 research outputs found

    Seasonal evolution of the supraglacial drainage network at Humboldt Glacier, North Greenland, between 2016 and 2020

    Get PDF
    Supraglacial rivers and lakes are important for the routing and storage of surface meltwater during the summer melt season across the Greenland Ice Sheet (GrIS), yet remain poorly mapped and quantified across the northern part of the ice sheet, which is rapidly losing mass. Here we produce, for the first time, a high-resolution record of the supraglacial drainage network (including both rivers and lakes) and its seasonal behaviour at Humboldt Glacier, a wide-outlet glacier draining a large hydrologic catchment (13,488 km2), spanning the period 2016 to 2020 using 10 m spatial resolution Sentinel-2 imagery. Our results reveal a perennially extensive yet interannually-variable supraglacial network extending from an elevation of 200 m a.s.l to a maximum of ~1440 m a.s.l recorded in 2020, with limited development of the network observed in the low melt years of 2017 and 2018. The supraglacial drainage network is shown to cover an area ranging between 965.7 km2 (2018) and 1566.3 km2 (2019) at its maximum seasonal extent, with spatial coverage of up to 2685 km2 recorded during the early phases of the melt season when a slush zone is most prominent. Up-glacier expansion and the development of an efficient supraglacial drainage network as surface runoff increases and the snowline retreats is clearly visible. Preconditioning of the ice surface following a high melt year is also observed, with the earlier widespread exposure of the supraglacial drainage network in 2020 compared to other years; a finding that may become representative with persistent warmer years into the future. Overall, this study provides evidence of a persistent, yet dynamic, supraglacial drainage network at this prominent northern GrIS outlet glacier and advances our understanding of such hydrologic processes, particularly under ongoing climatic warming and enhanced runoff

    Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica

    Get PDF
    Over recent decades outlet glaciers of the Amundsen Sea Embayment (ASE), West Antarctica, have accelerated, thinned and retreated, and are now contributing approximately 10% to global sea level rise. All the ASE glaciers flow into ice shelves, and it is the thinning of these since the 1970s, and their ungrounding from “pinning points” that is widely held to be responsible for triggering the glaciers’ decline. These changes have been linked to the inflow of warm Circumpolar Deep Water (CDW) onto the ASE's continental shelf. CDW delivery is highly variable, and is closely related to the regional atmospheric circulation. The ASE is south of the Amundsen Sea Low (ASL), which has a large variability and which has deepened in recent decades. The ASL is influenced by the phase of the Southern Annular Mode, along with tropical climate variability. It is not currently possible to simulate such complex atmosphere-ocean-ice interactions in models, hampering prediction of future change. The current retreat could mark the beginning of an unstable phase of the ASE glaciers that, if continued, will result in collapse of the West Antarctic Ice Sheet, but numerical ice-sheet models currently lack the predictive power to answer this question. It is equally possible that the recent retreat will be short-lived and that the ASE will find a new stable state. Progress is hindered by incomplete knowledge of bed topography in the vicinity of the grounding line. Furthermore, a number of key processes are still missing or poorly represented in models of ice-flow

    Muslims their religious beliefs and practices. : V. 1 : The formative period.

    No full text
    Londonxviii, 155 p.; 21 cm

    Quranic Studies, part IV: Some methodological notes

    No full text

    Approaches To The History Of The Interpretation Of The Qur'an

    No full text
    Oxfordxi, 334 p.; 22 c

    Provocation and Its Responses

    No full text

    Muslims : their religious beliefs and practices

    No full text
    Londonxii, 346 p.; 22 cm

    The Muslim Samson: medieval, modern and scholarly interpretations

    No full text
    • 

    corecore