454 research outputs found

    Muon capture on nuclei with N > Z, random phase approximation, and in-medium renormalization of the axial-vector coupling constant

    Get PDF
    We use the random phase approximation to describe the muon capture rate on 44{}^{44}Ca,48{}^{48}Ca, 56{}^{56}Fe, 90{}^{90}Zr, and 208{}^{208}Pb. With 40{}^{40}Ca as a test case, we show that the Continuum Random Phase Approximation (CRPA) and the standard RPA give essentially equivalent descriptions of the muon capture process. Using the standard RPA with the free nucleon weak form factors we reproduce the experimental total capture rates on these nuclei quite well. Confirming our previous CRPA result for the N=ZN = Z nuclei, we find that the calculated rates would be significantly lower than the data if the in-medium quenching of the axial-vector coupling constant were employed.Comment: submitted to Phys. Rev.

    Standard-Level Herbivory in an Old-Growth Conifer Forest Canopy

    Get PDF
    Herbivory is an important ecological process in forest canopies but is difficult to measure, especially for whole stands. We used the Wind River Canopy Crane in Washington State to access 101 randomly-located sample points throughout the forest canopy. This provided a relatively quick and convenient way to estimate herbivory for a whole stand. The overall level of herbivory was estimated at 1.6% of leaf area. The distribution was strongly skewed to the lower canopy where broad-leafed species experienced higher levels of herbivory. Herbivory averaged 0.3% in conifers and 13.5% in broad-leafed species. Fully half of the sample points had no detectable herbivory. Herbivory in this old-growth conifer forest is among the lowest levels published for forests around the globe and may reflect the general levels of herbivory in temperate coniferous forests during nonoutbreak conditions. Our whole-stand estimate is the first attempt at measuring herbivory for an entire forest stand in the Pacific Northwest

    Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns

    Get PDF
    Self-assembled DNA nanostructures enable nanometre-precise patterning that can be used to create programmable molecular machines and arrays of functional materials. DNA origami is particularly versatile in this context because each DNA strand in the origami nanostructure occupies a unique position and can serve as a uniquely addressable pixel. However, the scale of such structures has been limited to about 0.05 square micrometres, hindering applications that demand a larger layout and integration with more conventional patterning methods. Hierarchical multistage assembly of simple sets of tiles can in principle overcome this limitation, but so far has not been sufficiently robust to enable successful implementation of larger structures using DNA origami tiles. Here we show that by using simple local assembly rules that are modified and applied recursively throughout a hierarchical, multistage assembly process, a small and constant set of unique DNA strands can be used to create DNA origami arrays of increasing size and with arbitrary patterns. We illustrate this method, which we term ‘fractal assembly’, by producing DNA origami arrays with sizes of up to 0.5 square micrometres and with up to 8,704 pixels, allowing us to render images such as the Mona Lisa and a rooster. We find that self-assembly of the tiles into arrays is unaffected by changes in surface patterns on the tiles, and that the yield of the fractal assembly process corresponds to about 0.95^(m − 1) for arrays containing m tiles. When used in conjunction with a software tool that we developed that converts an arbitrary pattern into DNA sequences and experimental protocols, our assembly method is readily accessible and will facilitate the construction of sophisticated materials and devices with sizes similar to that of a bacterium using DNA nanostructures

    Ratings of age of acquisition of 299 words across 25 languages: Is there a cross-linguistic order of words?

    Get PDF
    We present a new set of subjective age-of-acquisition (AoA) ratings for 299 words (158 nouns, 141 verbs) in 25 languages from five language families (Afro-Asiatic: Semitic languages; Altaic: one Turkic language: Indo-European: Baltic, Celtic, Germanic, Hellenic, Slavic, and Romance languages; Niger-Congo: one Bantu language; Uralic: Finnic and Ugric languages). Adult native speakers reported the age at which they had learned each word. We present a comparison of the AoA ratings across all languages by contrasting them in pairs. This comparison shows a consistency in the orders of ratings across the 25 languages. The data were then analyzed (1) to ascertain how the demographic characteristics of the participants influenced AoA estimations and (2) to assess differences caused by the exact form of the target question (when did you learn vs. when do children learn this word); (3) to compare the ratings obtained in our study to those of previous studies; and (4) to assess the validity of our study by comparison with quasi-objective AoA norms derived from the MacArthur–Bates Communicative Development Inventories (MB-CDI). All 299 words were judged as being acquired early (mostly before the age of 6 years). AoA ratings were associated with the raters’ social or language status, but not with the raters’ age or education. Parents reported words as being learned earlier, and bilinguals reported learning them later. Estimations of the age at which children learn the words revealed significantly lower ratings of AoA. Finally, comparisons with previous AoA and MB-CDI norms support the validity of the present estimations. Our AoA ratings are available for research or other purposes

    IL-1 receptor signaling in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice

    Get PDF
    Proinflammatory cytokines have been implicated in alcohol-induced neurodegeneration, but the role of the neuroimmune system in alcohol related behaviors has only recently come to the forefront. Herein, the effects of binge-like drinking on IL-1β mRNA and immunoreactivity within the amygdala were measured following the “drinking in the dark” (DID) paradigm, a model of binge-like ethanol drinking in C57BL/6J mice. Moreover, the role of IL-1 receptor signaling in the amygdala on ethanol consumption was assessed. Results indicated that a history of binge-like ethanol drinking promoted a significant increase of IL-1β mRNA expression within the amygdala, and immunohistochemistry analyses revealed that the basolateral amygdala (BLA), but not central amygdala (CeA), exhibited significantly increased IL-1β immunoreactivity. Fluoro-Jade® C labeling indicated that multiple cycles of the DID paradigm were not sufficient to elicit neuronal death. Bilateral infusions of IL-1 receptor antagonist (IL-1Ra) reduced ethanol consumption when infused into the BLA but not the CeA. These observations were specific to ethanol drinking as the IL-1Ra did not alter either sucrose drinking or open-field locomotor activity. The current findings highlight a specific role for IL-1 receptor signaling in modulating binge-like ethanol consumption and indicate that proinflammatory cytokines can be induced prior to dependence or any evidence of neuronal cell death. These findings provide a framework in which to understand how neuroimmune adaptations may alter ethanol consumption and therein contributing to alcohol abuse

    Noun and verb knowledge in monolingual preschool children across 17 languages: Data from cross-linguistic lexical tasks (LITMUS-CLT)

    Get PDF
    This article investigates the cross-linguistic comparability of the newly developed lexical assessment tool Cross-linguistic Lexical Tasks (LITMUS-CLT). LITMUS-CLT is a part the Language Impairment Testing in Multilingual Settings (LITMUS) battery (Armon-Lotem, de Jong & Meir, 2015). Here we analyse results on receptive and expressive word knowledge tasks for nouns and verbs across 17 languages from eight different language families: Baltic (Lithuanian), Bantu (isiXhosa), Finnic (Finnish), Germanic (Afrikaans, British English, South African English, German, Luxembourgish, Norwegian, Swedish), Romance (Catalan, Italian), Semitic (Hebrew), Slavic (Polish, Serbian, Slovak) and Turkic (Turkish). The participants were 639 monolingual children aged 3;0-6;11 living in 15 different countries. Differences in vocabulary size were small between 16 of the languages; but isiXhosa-speaking children knew significantly fewer words than speakers of the other languages. There was a robust effect of word class: accuracy was higher for nouns than verbs. Furthermore, comprehension was more advanced than production. Results are discussed in the context of cross-linguistic comparisons of lexical development in monolingual and bilingual populations

    Stand-level herbivory in an old-growth conifer forest canopy

    Get PDF
    Herbivory is an important ecological process in forest canopies but is difficult to measure, especially for whole stands. We used the Wind River Canopy Crane in Washington State to access 101 randomly-located sample points throughout the forest canopy. This provided a relatively quick and convenient way to estimate herbivory for a whole stand. The overall level of herbivory was estimated at 1.6% of leaf area. The distribution was strongly skewed to the lower canopy where broad-leafed species experienced higher levels of herbivory. Herbivory averaged 0.3% in conifers and 13.5% in broad-leafed species. Fully half of the sample points had no detectable herbivory. Herbivory in this old-growth conifer forest is among the lowest levels published for forests around the globe and may reflect the general levels of herbivory in temperate coniferous forests during nonoutbreak conditions. Our whole-stand estimate is the first attempt at measuring herbivory for an entire forest stand in the Pacific Northwest

    Tropical Herbivorous Phasmids, but Not Litter Snails, Alter Decomposition Rates By Modifying Litter Bacteria

    Get PDF
    Consumers can alter decomposition rates through both feces and selective feeding in many ecosystems, but these combined effects have seldom been examined in tropical ecosystems. Members of the detrital food web (litter-feeders or microbivores) should presumably have greater effects on decomposition than herbivores, members of the green food web. Using litterbag experiments within a field enclosure experiment, we determined the relative effects of common litter snails (Megalomastoma croceum) and herbivorous walking sticks (Lamponius portoricensis) on litter composition, decomposition rates, and microbes in a Puerto Rican rainforest, and whether consumer effects were altered by canopy cover presence. Although canopy presence did not alter consumers’ effects, focal organisms had unexpected influences on decomposition. Decomposition was not altered by litter snails, but herbivorous walking sticks reduced leaf decomposition by about 50% through reductions in high quality litter abundance and, consequently, lower bacterial richness and abundance. This relatively unexplored but potentially important link between tropical herbivores, detritus, and litter microbes in this forest demonstrates the need to consider autotrophic influences when examining rainforest ecosystem processes
    corecore