56 research outputs found

    Sosiaaliturva ja elämänvaiheet : Suomen sosiaaliturvan kehitys esimerkkien ja tilastojen valossa

    Get PDF
    Sosiaaliturva ja elämänvaiheet kuvaa hyvinvointivaltiota sammakkoperspektiivistä. Kirja jäljittää kolmen nuoren esimerkkihenkilön – Ainon, Pertun ja Viivin – avulla sitä, kuinka paljon kukakin saa hyvinvointivaltiolta ja kuinka paljon maksaa sille eri elämänvaiheissa. Tarkastelu ulottuu jopa 70 vuoden päähän. Miten elämän mittaiseen sosiaaliturvaan vaikuttaa lumilautailuonnettomuus nuorena, pätkätyöt keski-iässä tai vanhuuden viimeiset vuodet vanhainkodissa? Kyseessä on helppolukuinen johdatus sosiaaliturvan historiaan, nykyiseen sosiaaliturvajärjestelmään ja sen rahoitukseen sekä tulevaisuuden näköaloihin. Kirja kertoo, miten suomalainen sosiaaliturva on elämässä mukana ja muutoksissa tukena. Kirjassa käsitellään paitsi tulonsiirtojen ja palveluiden myös kulutuksen ja verotuksen jakautumista eri elämänvaiheiden aikana. Viimeisessä luvussa otetaan kantaa ajankohtaiseen kysymykseen, riittävätkö rahat sosiaaliturvaan myös 70 vuoden kuluttua.10,00 euro

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm(-2)) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.An international team of researchers finds high potential for improving climate projections by a more comprehensive treatment of largely ignored Arctic vegetation types, underscoring the importance of Arctic energy exchange measuring stations.Peer reviewe

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types

    An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    No full text
    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth’s Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals
    corecore