84 research outputs found

    CO2 Sensitivity of Southern Ocean Phytoplankton

    Get PDF
    The Southern Ocean exerts a strong impact on marine biogeochemical cycles and global air-sea CO2 fluxes. Over the coming century, large increases in surface ocean CO2 levels, combined with increased upper water column temps. and stratification, are expected to diminish Southern Ocean CO2 uptake. These effects could be significantly modulated by concomitant CO2-dependent changes in the region\u27s biol. carbon pump. Here we show that CO2 concentrations affect the physiology, growth and species composition. of phytoplankton assemblages in the Ross Sea, Antarctica. Field results from in situ sampling and ship-board incubation experiments demonstrate that inorganic carbon uptake, steady-state productivity and diatom species composition are sensitive to CO2 concentrations ranging from 100 to 800 ppm. Elevated CO2 led to a measurable increase in phytoplankton productivity, promoting the growth of larger chain-forming diatoms. Our results suggest that CO2 concentrations can influence biological carbon cycling in the Southern Ocean, thereby creating potential climate feedbacks

    Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica

    Get PDF
    Significantly reduced ice coverage in Greenland and West Antarctica during the warmer-than-present Pliocene could account for ∼10m of global mean sea level rise. Any sea level increase beyond this would require contributions from the East Antarctic Ice Sheet (EAIS). Previous studies have presented low-resolution geochemical evidence from the geological record, suggesting repeated ice advance and retreat in low-lying areas of the EAIS such as the Wilkes Subglacial Basin. However, the rates and mechanisms of retreat events are less well constrained. Here we present orbitally-resolved marine detrital sediment provenance data, paired with ice-rafted debris and productivity proxies, during three time intervals from the middle to late Pliocene at IODP Site U1361A, offshore of the Wilkes Subglacial Basin. Our new data reveal that Pliocene shifts in sediment provenance were paralleled by increases in marine productivity, while the onset of such changes was marked by peaks in ice-rafted debris mass accumulation rates. The coincidence of sediment provenance and marine productivity change argues against a switch in sediment delivery between ice streams, and instead suggests that deglacial warming triggered increased rates of iceberg calving, followed by inland retreat of the ice margin. Timescales from the onset of deglaciation to an inland retreated ice margin within the Wilkes Subglacial Basin are on the order of several thousand years. This geological evidence corroborates retreat rates determined from ice sheet modeling, and a contribution of ∼3 to 4m of equivalent sea level rise from one of the most vulnerable areas of the East Antarctic Ice Sheet during interglacial intervals throughout the middle to late Pliocene.Provenance analysis was supported by a Kristian Gerhard Jeb-sen PhD Scholarship and NERC UK IODP grants (NE/H025162/1 and NE/H014144/1). Biogenic silica data was supported by a Royal So-ciety of New Zealand Marsden FastStart grant (#UOO-1315) and a University of Otago PhD Scholarship. Support for sedimentol-ogyanalysis was provided by the Royal Society of New ZealandRutherford Discovery Fellowship (RDF-13-VUW-003). XRF work was supported by the Ministry of Science and Innovation Grant CTM2014-60451-C2-1-P co-financed by the European Regional De-velopment Fund (FEDER). Samples were provided by the Integrated Ocean Drilling Program

    Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ashley, K. E., McKay, R., Etourneau, J., Jimenez-Espejo, F. J., Condron, A., Albot, A., Crosta, X., Riesselman, C., Seki, O., Mass, G., Golledge, N. R., Gasson, E., Lowry, D. P., Barrand, N. E., Johnson, K., Bertler, N., Escutia, C., Dunbar, R., & Bendle, J. A. Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Climate of the Past, 17(1), (2021): 1-19, https://doi.org/10.5194/cp-17-1-2021.Over recent decades Antarctic sea-ice extent has increased, alongside widespread ice shelf thinning and freshening of waters along the Antarctic margin. In contrast, Earth system models generally simulate a decrease in sea ice. Circulation of water masses beneath large-cavity ice shelves is not included in current Earth System models and may be a driver of this phenomena. We examine a Holocene sediment core off East Antarctica that records the Neoglacial transition, the last major baseline shift of Antarctic sea ice, and part of a late-Holocene global cooling trend. We provide a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability. Our record, supported by high-resolution ocean modelling, shows that a rapid Antarctic sea-ice increase during the mid-Holocene (∼ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth that slowed basal ice shelf melting. Incorporating this feedback mechanism into global climate models will be important for future projections of Antarctic changes.This research has been supported by the Natural Environment Research Council (CENTA PhD; NE/L002493/1 and Standard Grant Ne/I00646X/1), Japanese Society for the Promotion of Science (JSPS/FF2/60 no. L-11523), NZ Marsden Fund (grant nos. 18-VUW-089 and 15-VUW-131), NSF (grant nos. PLR-1443347 and ACI-1548562), the U.S. Dept. of Energy (grant no. DE-SC0016105), ERC (StG ICEPROXY, 203441; ANR CLIMICE, FP7 Past4Future, 243908), L'Oréal-UNESCO New Zealand For Women in Science Fellowship, University of Otago Research Grant, the IODP U.S. Science Support Program, Spanish Ministry of Science and Innovation (grant no. CTM2017-89711-C2-1-P), and the European Union (FEDER)

    Chronostratigraphic Framework for the IODP Expedition 318 Cores from the Wilkes Land Margin: Constraints for Paleoceanographic Reconstruction

    Get PDF
    [1] The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well‐behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region

    Plasma chemistry of the chinstrap penguin Pygoscelis antarctica during fasting periods: A case of poor adaptation to food deprivation?

    Get PDF
    The chinstrap penguin (Pygoscelis antarctica) is the smallest penguin species to be used to study the physiology of fasting. We analysed body-mass change and plasma chemistry of five non-breeding chinstraps during an experimental fasting period in the breeding season. We also analysed the same parameters in six fasting birds under natural conditions (during an incubation shift, which lasts about 10 days). Both groups presented similar patterns of change, showing a rapid increase in urea and uric acid plasma concentrations. Urea surpassed 3 mmol/l after 5 fasting days, while uric acid reached 1 mmol/l after 9 days. Plasma glucose levels decreased after 11 days, whereas cholesterol also showed a clear reduction during fasting. These results as a whole suggest that chinstrap penguins reached phase III after a short period in comparison with other Pygoscelis species. Body size and ecological factors could explain these inter-specific differences.Peer Reviewe

    Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials

    Get PDF
    Understanding ice sheet behaviour in the geological past is essential for evaluating the role of the cryosphere in the climate system and for projecting rates and magnitudes of sea level rise in future warming scenarios1,2,3,4. Although both geological data5,6,7 and ice sheet models3,8 indicate that marine-based sectors of the East Antarctic Ice Sheet were unstable during Pliocene warm intervals, the ice sheet dynamics during late Pleistocene interglacial intervals are highly uncertain3,9,10. Here we provide evidence from marine sedimentological and geochemical records for ice margin retreat or thinning in the vicinity of the Wilkes Subglacial Basin of East Antarctica during warm late Pleistocene interglacial intervals. The most extreme changes in sediment provenance, recording changes in the locus of glacial erosion, occurred during marine isotope stages 5, 9, and 11, when Antarctic air temperatures11 were at least two degrees Celsius warmer than pre-industrial temperatures for 2,500 years or more. Hence, our study indicates a close link between extended Antarctic warmth and ice loss from the Wilkes Subglacial Basin, providing ice-proximal data to support a contribution to sea level from a reduced East Antarctic Ice Sheet during warm interglacial intervals. While the behaviour of other regions of the East Antarctic Ice Sheet remains to be assessed, it appears that modest future warming may be sufficient to cause ice loss from the Wilkes Subglacial Basin

    Relative sea-level rise around East Antarctica during Oligocene glaciation

    Get PDF
    During the middle and late Eocene (∼48-34 Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarcticainduced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rosedespite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an icesheet grounding line

    Eocene cooling linked to early flow across the Tasmanian Gateway

    Get PDF
    The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO(2)). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ∼49–50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2–4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO(2) forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling

    Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    Get PDF
    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene
    corecore