Molecular and hydrogen isotope evidence of Holocene climate and cryosphere variability: results from a sediment core from the Adélie coast, Antarctica (IODP Expedition 318)

James Bendle¹, Osamu Seki², Henk Brinkhuis^{4,5}, Jaime Toney¹, Kimitaka Kawamura², Veronica Willmott³, Stefan Schouten^{4,5}, Francesca Sangiorgi⁴, Robert McKay⁶, Christina Riesselman⁷ Robert Dunbar ⁸ and the 318 IODP Expedition Science Party

¹ Glasgow Molecular Organic Geochemistry Laboratory (G-MOL), School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom.

² Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, Japan.

³ Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.

⁴ Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands.

⁵ Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, Netherlands.

⁶Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand.

US Geological Survey, Eastern Geology and Paleoclimate Science Center, 926A National Center, Reston, Virginia, USA. ⁸ Environmental Earth System Science, Stanford University, Stanford, California, USA.

The Southern Ocean remains the least studied region on Earth with respect to Holocene climate variability. The few Antarctic proximal marine sedimentary records available tend to be short, low resolution, and discontinuous. However, sediments recently recovered from the Adélie drift during IODP Expedition 318 present a new opportunity to study East Antarctic Holocene climatic evolution, at a resolution that facilitates direct comparison with ice-cores. Expedition 318 recovered 171m of Holocene laminated diatom ooze from site U1357B. The sediments represent continuous Holocene accumulation up to the present day (based on 89 AMS ¹⁴C dates) and are characterised by 2-6cm thick, light/dark laminae couplets, interpreted as seasonal biogenic production and accumulation events.

We present the results of initial biomarker analyses: fatty acid δD and TEX₈₆ measurements on lipid extracts from paired light/dark laminae throughout the Holocene. The C₁₈ fatty acid is assumed to represent an integrated signal from the algal precursors and thus surface water conditions. The δD_{C18-FA} values show no consistent offset between the light and dark laminae, and values become isotopically heavier on average through the Holocene (ca. -220 to 140‰), in line with declining insolation at 65°S. Superimposed on this trend are millennial scale isotopic excursions of ca. 20 to 60‰, including a clear excursion coeval with the late <u>Holocene</u> climate 'optimum' between 6 and 3 kyr, inferred from East Antarctic ice-cores (Masson et al., 2000). δD_{C18-FA} shows no clear relationship with TEX₈₆^L sea-surface temperature estimates, which display pronounced early variability and relative warmth from 11.2 to 10.4 ka (0 to 6.5 °C, average ca. 3.5 °C), but almost no change after 10.4 ka, as cold, stable SSTs (average ca. 2 °C) persist through the rest of the Holocene. We explore the potential controls on the δD_{C18-FA} record and suggest the influence of isotopically depleted meltwater from the proximal ice-sheet (additive to a salinity effect) and/or upwelling can account for the millennial scale variability.

References

V. F. Masson et al., Quaternary Research 54, 348 (2000).