41 research outputs found
Crystal structure of the di-haem cytochrome c peroxidase from Pseudomonas aeruginosa
AbstractBackground: Cytochrome c peroxidase from Pseudomonas aeruginosa (PsCCP) represents a new class of peroxidases which work without the need to create a semi-stable free radical for catalysis. The enzyme is located in the bacterial periplasm where its likely function is to provide protection against toxic peroxides. The soluble 323-residue single polypeptide chain contains two covalent c-type haems with very different properties: one of them is a low-potential (–330 mV) centre where hydrogen peroxide is reduced (the peroxidatic site); the other is a high-potential (+320 mV) centre which feeds electrons to the peroxidatic site from soluble electron-shuttle proteins such as cytochrome c and azurin.Results The crystal structure of the oxidized form of PsCCP has been determined to 2.4 å resolution by multiple isomorphous replacement, and refined to an R-factor of 19.2%. PsCCP is organized into two domains, both of them containing a covalent c-haem in a structure reminiscent of class 1 cytochromes c. The domains are related by a quasi-twofold axis. The domain interface holds a newly discovered calcium-binding site with an unusual set of ligands.Conclusion The likely function of the calcium site is to maintain the structural integrity of the enzyme and/or to modulate electron transfer between the two haem domains. The low-potential haem has two histidine axial ligands (His55 and His71) and the high-potential haem is ligated by His201 and Met275. There are no polar residues at the peroxidatic site in the inactive oxidized enzyme. The structure suggests that, in the half-reduced functional form of the enzyme, the low-potential haem has to shed His71 in order to make the enzyme catalytically competent. This process is likely to trigger a reorganization of the active site, and may introduce new residues into the haem pocket
Using clinical trial data and linked administrative health data to reduce the risk of adverse events associated with the uptake of newly released drugs by older Australians: a model process
BackgroundThe study was undertaken to evaluate the contribution of a process which uses clinical trial data plus linked de-identified administrative health data to forecast potential risk of adverse events associated with the use of newly released drugs by older Australian patients. MethodsThe study uses publicly available data from the clinical trials of a newly released drug to ascertain which patient age groups, gender, comorbidities and co-medications were excluded in the trials. It then uses linked de-identified hospital morbidity and medications dispensing data to investigate the comorbidities and co-medications of patients who suffer from the target morbidity of the new drug and who are the likely target population for the drug. The clinical trial information and the linked morbidity and medication data are compared to assess which patient groups could potentially be at risk of an adverse event associated with use of the new drug. ResultsApplying the model in a retrospective real-world scenario identified that the majority of the sample group of Australian patients aged 65 years and over with the target morbidity of the newly released COX-2-selective NSAID rofecoxib also suffered from a major morbidity excluded in the trials of that drug, indicating a substantial potential risk of adverse events amongst those patients. This risk was borne out in post-release morbidity and mortality associated with use of that drug. ConclusionsClinical trial data and linked administrative health data can together support a prospective assessment of patient groups who could be at risk of an adverse event if they are prescribed a newly released drug in the context of their age, gender, comorbidities and/or co-medications. Communication of this independent risk information to prescribers has the potential to reduce adverse events in the period after the release of the new drug, which is when the risk is greatest. Note: The terms \u27adverse drug reaction\u27 and \u27adverse drug event\u27 have come to be used interchangeably in the current literature. For consistency, the authors have chosen to use the wider term \u27adverse drug event\u27 (ADE). <br /
A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36
Background Rust diseases are of major importance in wheat production worldwide. With the constant evolution of new rust strains and their adaptation to higher temperatures, consistent and durable disease resistance is a key challenge. Environmental conditions affect resistance gene performance, but the basis for this is poorly understood. Results Here we show that a change in day temperature affects wheat resistance to Puccinia striiformis f. sp tritici (Pst), the causal agent of yellow (or stripe) rust. Using adult plants of near-isogenic lines UC1041 +/- Yr36, there was no significant difference between Pst percentage uredia coverage in plants grown at day temperatures of 18°C or 25°C in adult UC1041 + Yr36 plants. However, when plants were transferred to the lower day temperature at the time of Pst inoculation, infection increased up to two fold. Interestingly, this response was independent of Yr36, which has previously been reported as a temperature-responsive resistance gene as Pst development in adult UC1041 -Yr36 plants was similarly affected by the plants experiencing a temperature reduction. In addition, UC1041 -Yr36 plants grown at the lower temperature then transferred to the higher temperature were effectively resistant and a temperature change in either direction was shown to affect Pst development up to 8 days prior to inoculation. Results for seedlings were similar, but more variable compared to adult plants. Enhanced resistance to Pst was observed in seedlings of UC1041 and the cultivar Shamrock when transferred to the higher temperature. Resistance was not affected in seedlings of cultivar Solstice by a temperature change in either direction. Conclusions Yr36 is effective at 18°C, refining the lower range of temperature at which resistance against Pst is conferred compared to previous studies. Results reveal previously uncharacterised defence temperature sensitivity in the UC1041 background which is caused by a change in temperature and independently of Yr36. This novel phenotype is present in some cultivars but absent in others, suggesting that Pst defence may be more stable in some cultivars than others when plants are exposed to varying temperatures
Pathogen lifestyle determines host genetic signature of quantitative disease resistance loci in oilseed rape ( Brassica napus )
© 2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Using associative transcriptomics, our study identifies genes conferring resistance to four diverse fungal pathogens in crops, emphasizing key genetic determinants of multi-pathogen resistance. Crops are affected by several pathogens, but these are rarely studied in parallel to identify common and unique genetic factors controlling diseases. Broad-spectrum quantitative disease resistance (QDR) is desirable for crop breeding as it confers resistance to several pathogen species. Here, we use associative transcriptomics (AT) to identify candidate gene loci associated with Brassica napus constitutive QDR to four contrasting fungal pathogens: Alternaria brassicicola, Botrytis cinerea, Pyrenopeziza brassicae, and Verticillium longisporum. We did not identify any shared loci associated with broad-spectrum QDR to fungal pathogens with contrasting lifestyles. Instead, we observed QDR dependent on the lifestyle of the pathogen-hemibiotrophic and necrotrophic pathogens had distinct QDR responses and associated loci, including some loci associated with early immunity. Furthermore, we identify a genomic deletion associated with resistance to V. longisporum and potentially broad-spectrum QDR. This is the first time AT has been used for several pathosystems simultaneously to identify host genetic loci involved in broad-spectrum QDR. We highlight constitutive expressed candidate loci for broad-spectrum QDR with no antagonistic effects on susceptibility to the other pathogens studies as candidates for crop breeding. In conclusion, this study represents an advancement in our understanding of broad-spectrum QDR in B. napus and is a significant resource for the scientific community.Peer reviewe
Necrosis and ethylene-inducing-like peptide patterns from crop pathogens induce differential responses within seven brassicaceous species
Translational research is required to advance fundamental knowledge on plant immunity towards application in crop improvement. Recognition of microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) triggers a first layer of immunity in plants. The broadly occurring family of necrosis- and ethylene-inducing peptide 1 (NEP1)-like proteins (NLPs) contains immunogenic peptide patterns that are recognized by a number of plant species. Arabidopsis can recognize NLPs by the pattern recognition receptor AtRLP23 and its co-receptors SOBIR1, BAK1, and BKK1, leading to induction of defence responses including the production of reactive oxygen species (ROS) and elevation of intracellular [Ca2+]. However, little is known about NLP perception in Brassica crop species. Within 12 diverse accessions for each of six Brassica crop species, we demonstrate variation in response to Botrytis cinerea NLP BcNEP2, with Brassica oleracea (CC genome) being nonresponsive and only two Brassica napus cultivars responding to BcNEP2. Peptides derived from four fungal pathogens of these crop species elicited responses similar to BcNEP2 in B. napus and Arabidopsis. Induction of ROS by NLP peptides was strongly reduced in Atrlp23, Atsobir1 and Atbak1-5 Atbkk1-1 mutants, confirming that recognition of Brassica pathogen NLPs occurs in a similar manner to that of HaNLP3 from Hyaloperonospora arabidopsidis in Arabidopsis. In silico analysis of the genomes of two B. napus accessions showed similar presence of homologues for AtBAK1, AtBKK1 and AtSOBIR1 but variation in the organization of AtRLP23 homologues. We could not detect a strong correlation between the ability to respond to NLP peptides and resistance to B. cinerea
Coevolution between a Family of Parasite Virulence Effectors and a Class of LINE-1 Retrotransposons
Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota) are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVRk1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVRk1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1) the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2) the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome
Positive Selection Differs between Protein Secondary Structure Elements in Drosophila
Different protein secondary structure elements have different physicochemical properties and roles in the protein, which may determine their evolutionary flexibility. However, it is not clear to what extent protein structure affects the way Darwinian selection acts at the amino acid level. Using phylogeny-based likelihood tests for positive selection, we have examined the relationship between protein secondary structure and selection across six species of Drosophila. We find that amino acids that form disordered regions, such as random coils, are far more likely to be under positive selection than expected from their proportion in the proteins, and residues in helices and β-structures are subject to less positive selection than predicted. In addition, it appears that sites undergoing positive selection are more likely than expected to occur close to one another in the protein sequence. Finally, on a genome-wide scale, we have determined that positively selected sites are found more frequently toward the gene ends. Our results demonstrate that protein structures with a greater degree of organization and strong hydrophobicity, represented here as helices and β-structures, are less tolerant to molecular adaptation than disordered, hydrophilic regions, across a diverse set of proteins
Silencing of Aphid Genes by dsRNA Feeding from Plants
RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs.In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions.Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control
Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel
Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants
Detection of physically interacting proteins with the CC and NB-ARC domains of a putative yellow rust resistance protein, Yr10, in wheat
Gene-for-gene (GFG) resistance is a potent defense mechanism in plants, that is mediated by resistance (R) proteins. In GFG resistance, pathogen effector or avirulence (Avr) proteins are recognised by R-proteins which initiate a series of signal transduction events that lead to hypersensitive cell death. In cereals, many R-proteins are comprised of an N-terminal coiled-coiled (CC) domain, a Nucleotide Binding (NB) domain and a Leucine Rich Repeats (LRR) region associated with effector recognition. NB-LRR immunity proteins are highly conserved across plant and animal taxa. To advance understating of signal transduction events in cereals, we exploited the high level of protein conservation to first identify yeast gene products interacting with the CC and NB domains of the candidate yellow rust R-protein (Yr10). Screening revealed proteins having mostly apoptosis related functions (Signal Recognition Particle 72kDa (SRP72); Chromosome SEgregation 1 (CSE1); ARrest Defective 1 (ARD1), translation initiation control in response to stress conditions (General Control Nonderepressible 2 (GCN2)), and a HSP90 co-chaperone (Cyclosporin-sensitive proline rotamase 7 (CPR7)). We then identified the close homologues of the interactors in barley and show that they were induced at 6 h and/or 12 h after infection in Mla3 mediated Powdery Mildew (Blumeria graminis f.sp. hordei, Bgh) disease resistance, suggesting their involvement in pathogen response.Uluslararası Genetik Mühendisliği ve Biyoteknoloji Merkezi (TUR/07-03)Devlet Planlama Teşkilatı (DPT2004K120750)Ortadoğu Teknik ÜniversitesiBiyoteknoloji ve Biyolojik Bilimler Araştırma Konseyi (BBSRC)(BB/G024960/1)UK Research & Innovation (UKRI) (BB/G024960/1