33 research outputs found

    Ocean processes at the Antarctic continental slope

    Get PDF
    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An © 2014 The Authors

    Climate response to increasing Antarctic iceberg and ice shelf melt

    Get PDF
    Mass loss from the Antarctic continent is increasing; however, climate models either assume a constant mass loss rate or return snowfall over land to the ocean to maintain equilibrium. Numerous studies have investigated sea ice and ocean sensitivity to this assumption and reached different conclusions, possibly due to different representations of melt fluxes. The coupled atmosphere-land-ocean-sea ice model, HadGEM3-GC3.1, includes a realistic spatial distribution of coastal melt fluxes, a new ice shelf cavity parameterization, and explicit representation of icebergs. This configuration makes it appropriate to revisit how increasing melt fluxes influence ocean and sea ice and to assess whether responses to melt from ice shelves and icebergs are distinguishable. We present results from simulated scenarios of increasing meltwater fluxes and show that these drive sea ice increases and, for increasing ice shelf melt, a decline in Antarctic Bottom Water formation. In our experiments, the mixed layer around the Antarctic coast deepens in response to rising ice shelf meltwater and shallows in response to stratification driven by iceberg melt. We find similar surface temperature and salinity responses to increasing meltwater fluxes from ice shelves and icebergs, but midlayer waters warm to greater depths and farther north when ice shelf melt is present. We show that as meltwater fluxes increase, snowfall becomes more likely at lower latitudes and Antarctic Circumpolar Current transport declines. These insights are helpful for interpretation of climate simulations that assume constant mass loss rates and demonstrate the importance of representing increasing melt rates for both ice shelves and icebergs

    Impact of model physics on estimating the surface mass balance of the Greenland ice sheet

    Get PDF
    Long-term predictions of sea level rise from increased Greenland ice sheet melting have been derived using Positive Degree Day models only. It is, however, unknown precisely what uncertainties are associated with applying this simple surface melt parameterization for future climate. We compare the behavior of a Positive Degree Day and Energy Balance/ Snowpack model for estimating the surface mass balance of the Greenland ice sheet under a warming climate. Both models were first tuned to give similar values for present-day mass balance using 10 years of ERA-40 climatology and were then run for 300 years, forced with the output of a GCM in which atmospheric CO2 increased to 4 times preindustrial levels. Results indicate that the Positive Degree Day model is more sensitive to climate warming than the Energy Balance model, generating annual runoff rates almost twice as large for a fixed ice sheet geometry. Roughly half of this difference was due to differences in the volume of melt generated and half was due to differences in refreezing rates in the snowpack. Our results indicate that the modeled snowpack properties evolve on a multidecadal timescale to changing climate, with a potentially large impact on the mass balance of the ice sheet; an evolution that was absent from the Positive Degree Day model. Copyright 2007 by the American Geophysical Union

    Changes in global ocean bottom properties and volume transports in CMIP5 models under climate change scenarios

    Get PDF
    Changes in bottom temperature, salinity and density in the global ocean by 2100 for CMIP5 climate models are investigated for the climate change scenarios RCP4.5 and RCP8.5. The mean of 24 models shows a decrease in density in all deep basins except the North Atlantic which becomes denser. The individual model responses to climate change forcing are more complex: regarding temperature, the 24 models predict a warming of the bottom layer of the global ocean; in salinity, there is less agreement regarding the sign of the change, especially in the Southern Ocean. The magnitude and equatorward extent of these changes also vary strongly among models. The changes in properties can be linked with changes in the mean transport of key water masses. The Atlantic Meridional Overturning Circulation weakens in most models and is directly linked to changes in bottom density in the North Atlantic. These changes are due to the intrusion of modified Antarctic Bottom Water, made possible by the decrease in North Atlantic Deep Water formation. In the Indian, Pacific and South Atlantic, changes in bottom density are congruent with the weakening in Antarctic Bottom Water transport through these basins. We argue that the greater the 1986-2005 meridional transports, the more changes have propagated equatorwards by 2100. However, strong decreases in density over 100 years of climate change cause a weakening of the transports. The speed at which these property changes reach the deep basins is critical for a correct assessment of the heat storage capacity of the oceans as well as for predictions of future sea level rise

    Ocean processes at the Antarctic continental slope

    Get PDF
    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system

    Procalcitonin Is Not a Reliable Biomarker of Bacterial Coinfection in People With Coronavirus Disease 2019 Undergoing Microbiological Investigation at the Time of Hospital Admission

    Get PDF
    Abstract Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).</jats:p
    corecore