1,692 research outputs found
Recommended from our members
Chemical characterization of the surface sites of coal
We propose to do experimental studies in four related areas concerning the acid-base properties of coal surfaces; (1) develop high precision flow microcalorimetric methods for determining the concentrations and strengths of the acidic and basic surface sites of coal powders; (2) develop photo-acoustic FTIR and solid-state NMR spectral shift techniques for determination of the concentrations and strengths of acidic and basic surface sites of coal powders; (3) determine the concentrations and strengths of the acidic and basic surface sites of some of the well-characterized coal samples from Argonne National Labs, comparing the coal samples before and after demineralization treatments with HCl and HF; (4) study the effects of surface acidity and basicity on the coal/water interface, with emphasis on the role of interfacial acid-base interactions in the adsorption of ions, surfactants and coal/water slurry stabilizers. One of the major goals of this research effort is to identify and characterize acidic and basic molecules which have NMR active nuclei such that through measurements of NMR chemical shifts one can deduce the surface acidity or basicity of solids such as coals. This quarter, triphenylsilanol was investigated as an NMR chemical shift probe molecule. 2 figs., 1 tab
Wind Accretion and State Transitions in Cygnus X-1
We present the results of a spectroscopic monitoring program (from 1998 to
2002) of the H-alpha emission strength in HDE 226868, the optical counterpart
of the black hole binary, Cyg X-1. The H-alpha profiles consist of (1) a P
Cygni component associated with the wind of the supergiant, (2) emission
components that attain high velocity at the conjunctions and that probably form
in enhanced outflows both towards and away from the black hole, and (3) an
emission component that moves in anti-phase with the supergiant's motion. We
argue that the third component forms in accreted gas near the black hole, and
the radial velocity curve of the emission is consistent with a mass ratio of
M_X / M_opt = 0.36 +/- 0.05. We find that there is a general anti-correlation
between the H-alpha emission strength and X-ray flux in the sense that when the
H-alpha emission is strong (W_\lambda < -0.5 Angstroms) the X-ray flux is
weaker and the spectrum harder. On the other hand, there is no correlation
between H-alpha emission strength and X-ray flux when H-alpha is weak. During
the low/hard X-ray state, the strong wind is fast and the accretion rate is
relatively low, while in the high/soft state the weaker, highly ionized wind
attains only a moderate velocity and the accretion rate increases. We argue
that the X-ray transitions from the normal low/hard to the rare high/soft state
are triggered by episodes of decreased mass loss rate in the supergiant donor
star.Comment: 45 pages, 16 figures, ApJ, in pres
KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra
We announce the discovery of a highly inflated transiting hot Jupiter
discovered by the KELT-North survey. A global analysis including constraints
from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly
evolved, G dwarf with K, , , an inferred mass
M, and radius
R. The planetary companion has mass , radius
, surface gravity , and density
g cm. The planet is on a roughly
circular orbit with semimajor axis AU and
eccentricity . The best-fit linear ephemeris is
BJD and
days. This planet is one of the most inflated of all known transiting
exoplanets, making it one of the few members of a class of extremely low
density, highly-irradiated gas giants. The low stellar and large
implied radius are supported by stellar density constraints from follow-up
light curves, plus an evolutionary and space motion analysis. We also develop a
new technique to extract high precision radial velocities from noisy spectra
that reduces the observing time needed to confirm transiting planet candidates.
This planet boasts deep transits of a bright star, a large inferred atmospheric
scale height, and a high equilibrium temperature of
K, assuming zero albedo and perfect heat redistribution, making it one of the
best targets for future atmospheric characterization studies.Comment: Submitted to ApJ, feedback is welcom
Classification of patients with knee osteoarthritis in clinical phenotypes: data from the osteoarthritis initiative
<div><p>Objectives</p><p>The existence of phenotypes has been hypothesized to explain the large heterogeneity characterizing the knee osteoarthritis. In a previous systematic review of the literature, six main phenotypes were identified: Minimal Joint Disease (MJD), Malaligned Biomechanical (MB), Chronic Pain (CP), Inflammatory (I), Metabolic Syndrome (MS) and Bone and Cartilage Metabolism (BCM). The purpose of this study was to classify a sample of individuals with knee osteoarthritis (KOA) into pre-defined groups characterized by specific variables that can be linked to different disease mechanisms, and compare these phenotypes for demographic and health outcomes.</p><p>Methods</p><p>599 patients were selected from the OAI database FNIH at 24 months’ time to conduct the study. For each phenotype, cut offs of key variables were identified matching the results from previous studies in the field and the data available for the sample. The selection process consisted of 3 steps. At the end of each step, the subjects classified were excluded from the further classification stages. Patients meeting the criteria for more than one phenotype were classified separately into a ‘complex KOA’ group.</p><p>Results</p><p>Phenotype allocation (including complex KOA) was successful for 84% of cases with an overlap of 20%. Disease duration was shorter in the MJD while the CP phenotype included a larger number of Women (81%). A significant effect of phenotypes on WOMAC pain (F = 16.736 p <0.001) and WOMAC physical function (F = 14.676, p < 0.001) was identified after controlling for disease duration.</p><p>Conclusion</p><p>This study signifies the feasibility of a classification of KOA subjects in distinct phenotypes based on subgroup-specific characteristics.</p></div
Technical design and performance of the NEMO3 detector
The development of the NEMO3 detector, which is now running in the Frejus
Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun
more than ten years ago. The NEMO3 detector uses a tracking-calorimeter
technique in order to investigate double beta decay processes for several
isotopes. The technical description of the detector is followed by the
presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author:
Corinne Augier ([email protected]
Whole Earth Telescope observations of the pulsating subdwarf B star PG 0014+067
PG 0014+067 is one of the most promising pulsating subdwarf B stars for
seismic analysis, as it has a rich pulsation spectrum. The richness of its
pulsations, however, poses a fundamental challenge to understanding the
pulsations of these stars, as the mode density is too complex to be explained
only with radial and nonradial low degree (l < 3) p-modes without rotational
splittings. One proposed solution, for the case of PG 0014+067 in particular,
assigns some modes with high degree (l=3). On the other hand, theoretical
models of sdB stars suggest that they may retain rapidly rotating cores, and so
the high mode density may result from the presence of a few rotationally-split
triplet (l=1), quintuplet (l=2) modes, along with radial (l=0) p-modes. To
examine alternative theoretical models for these stars, we need better
frequency resolution and denser longitude coverage. Therefore, we observed this
star with the Whole Earth Telescope for two weeks in October 2004. In this
paper we report the results of Whole Earth Telescope observations of the
pulsating subdwarf B star PG 0014+067. We find that the frequencies seen in PG
0014+067 do not appear to fit any theoretical model currently available;
however, we find a simple empirical relation that is able to match all of the
well-determined frequencies in this star.Comment: 19 pages, preprint of paper accepted for publication in The
Astrophysical Journa
The PLATO Dome A Site-Testing Observatory : instrumentation and first results
The PLATeau Observatory (PLATO) is an automated self-powered astrophysical observatory that was deployed to Dome A, the highest point on the Antarctic plateau, in 2008 January. PLATO consists of a suite of site-testing instruments designed to quantify the benefits of the Dome A site for astronomy, and science instruments designed to take advantage of the unique observing conditions. Instruments include CSTAR, an array of optical telescopes for transient astronomy; Gattini, an instrument to measure the optical sky brightness and cloud cover statistics; DASLE, an experiment to measure the statistics of the meteorological conditions within the near-surface layer; Pre-HEAT, a submillimeter tipping radiometer measuring the atmospheric transmission and water vapor content and performing spectral line imaging of the Galactic plane; and Snodar, an acoustic radar designed to measure turbulence within the near-surface layer. PLATO has run completely unattended and collected data throughout the winter 2008 season. Here we present a detailed description of the PLATO instrument suite and preliminary results obtained from the first season of operation
Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils
The development of BiPo detectors is dedicated to the measurement of
extremely high radiopurity in Tl and Bi for the SuperNEMO
double beta decay source foils. A modular prototype, called BiPo-1, with 0.8
of sensitive surface area, has been running in the Modane Underground
Laboratory since February, 2008. The goal of BiPo-1 is to measure the different
components of the background and in particular the surface radiopurity of the
plastic scintillators that make up the detector. The first phase of data
collection has been dedicated to the measurement of the radiopurity in
Tl. After more than one year of background measurement, a surface
activity of the scintillators of (Tl) 1.5
Bq/m is reported here. Given this level of background, a larger BiPo
detector having 12 m of active surface area, is able to qualify the
radiopurity of the SuperNEMO selenium double beta decay foils with the required
sensitivity of (Tl) 2 Bq/kg (90% C.L.) with a six
month measurement.Comment: 24 pages, submitted to N.I.M.
- …