923 research outputs found

    Cell synchronization and dynamic G-banding of equine chromosomes by bromodeoxyurldine

    Get PDF
    Both dynamic G-banding and cell synchronization produced by bromodeoxyuridine (BrdU), were applied to equine chromosomes. BrdU incorporated during the first half of the S-phase is taken up into the R-bands that are early replicating. These bands, which have incorporated BrdU, cannot contract as usual and remain elongated; only the other regions of the chromosome, i.e., the G-bands, contract normally and are sharply defined. BrdU also can be used for cell synchronization. The addition of BrdU in a high concentration, 15 hours before harvest, and its removal 11 hours later, has two effects: initially the BrdU is incorporated during the first part of the S-phase and then it blocks the cells at mid-S-phase. Within the cell cycle, mid-S-phase appears to be the most vuinerable time to various blocking agents. To differentiate the regions of BrdU incorporation from those that have not been substituted, the fluorescence-photolysis-Glemsa (FPG) technique was applied as modified for horse chromosomes. This dynamic technique, which produces many prometaphase and prophase chromosomes showing very sharp G-bands, is certain to enhance the accuracy of cytogenetic analysis and aid in the standardization of equine chromosome

    High resolution R-bands produced in equine chromosomes after incorporation of bromodeoxyuridine

    Get PDF
    Cell synchronization was used to obtain an adequate percentage of very long chromosomes in equine mitotic spreads. Reported here is our variation, adapted to horse chromosomes, of a method using excess thymidine followed by bromodeoxyuridine incorporation. This technique routinely yields excellent quality cells, predominantly in prometaphase and prophase. Among other differences with the standard technique, this addltion does not use Colcemid, which, in addltion to Inhibiting spindle fiber formation, also increases chromosome contraction resulting in thicker and thus fewer bands. Consequently, horse prometaphase chromosomes, which have incorporated BrdU in the late-S-phase, are very long and display a large number of R-bands after the fluorescence-photolysis Glemsa method. This technique should definitely be useful for the analysis of structural anomalies and the standardization of equine R-band

    Deep near-IR observations of the Globular Cluster M4: Hunting for Brown Dwarfs

    Full text link
    We present an analysis of deep HST/WFC3 near-IR (NIR) imaging data of the globular cluster M4. The best-photometry NIR colour-magnitude diagram (CMD) clearly shows the main sequence extending towards the expected end of the Hydrogen-burning limit and going beyond this point towards fainter sources. The white dwarf sequence can be identified. As such, this is the deepest NIR CMD of a globular cluster to date. Archival HST optical data were used for proper-motion cleaning of the CMD and for distinguishing the white dwarfs (WDs) from brown dwarf (BD) candidates. Detection limits in the NIR are around F110W approx 26.5 mag and F160W approx27 mag, and in the optical around F775W approx 28 mag. Comparing our observed CMDs with theoretical models, we conclude that we have reached beyond the H-burning limit in our NIR CMD and are probably just above or around this limit in our optical-NIR CMDs. Thus, any faint NIR sources that have no optical counterpart are potential BD candidates, since the optical data are not deep enough to detect them. We visually inspected the positions of NIR sources which are fainter than the H-burning limit in F110W and for which the optical photometry did not return a counterpart. We found in total five sources for which we did not get an optical measurement. For four of these five sources, a faint optical counterpart could be visually identified, and an upper optical magnitude was estimated. Based on these upper optical magnitude limits, we conclude that one source is likely a WD, one source could either be a WD or BD candidate, and the remaining two sources agree with being BD candidates. For only one source no optical counterpart could be detected, which makes this source a good BD candidate. We conclude that we found in total four good BD candidates.Comment: ApJ accepted, 28 pages including 16 figure

    The Dwarf Irregular Galaxy UGC 7636 Exposed: Stripping At Work In The Virgo Cluster

    Full text link
    We present the results of optical spectroscopy of a newly discovered H II region residing in the H I gas cloud located between the dwarf irregular galaxy UGC 7636 and the giant elliptical galaxy NGC 4472 in the Virgo Cluster. By comparing UGC 7636 with dwarf irregular galaxies in the field, we show that the H I cloud must have originated from UGC 7636 because (1) the oxygen abundance of the cloud agrees with that expected for a galaxy with the blue luminosity of UGC 7636, and (2) M_{H I}/L_B for UGC 7636 becomes consistent with the measured oxygen abundance of the cloud if the H I mass of the cloud is added back into UGC 7636. It is likely that tides from NGC 4472 first loosened the H I gas, after which ram-pressure stripping removed the gas from UGC 7636.Comment: 12 pages, 2 eps figures (AASTeX 5.0); accepted for publication in ApJ Letter

    A uniform treatment of the orbital effects due to a violation of the Strong Equivalence Principle in the gravitational Stark-like limit

    Full text link
    We analytically work out several effects which a violation of the Strong Equivalence Principle (SEP) induces on the orbital motion of a binary system constituted of self-gravitating bodies immersed in a constant and uniform external field. We do not restrict to the small eccentricity limit. Moreover, we do not select any specific spatial orientation of the external polarizing field. We explicitly calculate the SEP-induced mean rates of change of all the osculating Keplerian orbital elements of the binary, the perturbation of the projection of the binary orbit onto the line-of-sight, the shift of the radial velocity, and the range and range-rate signatures and as well. We find that the ratio of the SEP precessions of the node and the inclination of the binary depends only on and the pericenter of the binary itself, being independent on both the magnitude and the orientation of the polarizing field, and on the semimajor axis, the eccentricity and the node of the binary. Our results, which do not depend on any particular SEP-violating theoretical scheme, can be applied to quite general astronomical and astrophysical scenarios. They can be used to better interpret present and future SEP experiments, especially when several theoretical SEP mechanisms may be involved, and to suitably design new dedicated tests.Comment: LaTex2e, 14 pages, no figures, no tables, 42 references. To appear in Classical and Quantum Gravity (CQG

    A {\mu}-TPC detector for the characterization of low energy neutron fields

    Full text link
    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields

    Data acquisition electronics and reconstruction software for real time 3D track reconstruction within the MIMAC project

    Full text link
    Directional detection of non-baryonic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A gaseous micro-TPC matrix, filled with either 3He, CF4 or C4H10 has been developed within the MIMAC project. A dedicated acquisition electronics and a real time track reconstruction software have been developed to monitor a 512 channel prototype. This autotriggered electronic uses embedded processing to reduce the data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.Comment: Proceedings of TWEPP-11, Vienna, Austria, 26-30 September 201

    The ionization mechanism of NGC 185: how to fake a Seyfert galaxy?

    Full text link
    NGC 185 is a dwarf spheroidal satellite of the Andromeda galaxy. From mid-1990s onwards it was revealed that dwarf spheroidals often display a varied and in some cases complex star formation history. In an optical survey of bright nearby galaxies, NGC 185 was classified as a Seyfert galaxy based on its emission line ratios. However, although the emission lines in this object formally place it in the category of Seyferts, it is probable that this galaxy does not contain a genuine active nucleus. NGC 185 was not detected in radio surveys either in 6 or 20 cm, or X-ray observations, which means that the Seyfert-like line ratios may be produced by stellar processes. In this work, we try to identify the possible ionization mechanisms for this galaxy. We discussed the possibility of the line emissions being produced by planetary nebulae (PNe), using deep spectroscopy observations obtained with GMOS-N, at Gemini. Although the fluxes of the PNe are high enough to explain the integrated spectrum, the line ratios are very far from the values for the Seyfert classification. We then proposed that a mixture of supernova remnants and PNe could be the source of the ionization, and we show that a composition of these two objects do mimic Seyfert-like line ratios. We used chemical evolution models to predict the supernova rates and to support the idea that these supernova remnants should be present in the galaxy.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    Micromegas detector developments for MIMAC

    Full text link
    The aim of the MIMAC project is to detect non-baryonic Dark Matter with a directional TPC. The recent Micromegas efforts towards building a large size detector will be described, in particular the characterization measurements of a prototype detector of 10 Ă—\times 10 cm2^2 with a 2 dimensional readout plane. Track reconstruction with alpha particles will be shown.Comment: 8 pages, 7 figures Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011; corrections on author affiliation
    • …
    corecore