240 research outputs found

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Communication about colorectal cancer screening in Britain:public preferences for an expert recommendation

    Get PDF
    BACKGROUND: Informed decision-making approaches to cancer screening emphasise the importance of decisions being determined by individuals' own values and preferences. However, advice from a trusted source may also contribute to autonomous decision-making. This study examined preferences regarding a recommendation from the NHS and information provision in the context of colorectal cancer (CRC) screening. METHODS: In face-to-face interviews, a population-based sample of adults across Britain (n=1964; age 50–80 years) indicated their preference between: (1) a strong recommendation to participate in CRC screening, (2) a recommendation alongside advice to make an individual decision, and (3) no recommendation but advice to make an individual decision. Other measures included trust in the NHS and preferences for information on benefits and risks. RESULTS: Most respondents (84%) preferred a recommendation (47% strong recommendation, 37% recommendation plus individual decision-making advice), but the majority also wanted full information on risks (77%) and benefits (78%). Men were more in favour of a recommendation than women (86% vs 81%). Trust in the NHS was high overall, but the minority who expressed low trust were less likely to want a recommendation. CONCLUSION: Most British adults want full information on risks and benefits of screening but they also want a recommendation from an authoritative source. An ‘expert' view may be an important part of autonomous health decision-making

    The location of the axon initial segment affects the bandwidth of spike initiation dynamics

    Get PDF
    The dynamics and the sharp onset of action potential (AP) generation have recently been the subject of intense experimental and theoretical investigations. According to the resistive coupling theory, an electrotonic interplay between the site of AP initiation in the axon and the somato-dendritic load determines the AP waveform. This phenomenon not only alters the shape of AP recorded at the soma, but also determines the dynamics of excitability across a variety of time scales. Supporting this statement, here we generalize a previous numerical study and extend it to the quantification of the input-output gain of the neuronal dynamical response. We consider three classes of multicompartmental mathematical models, ranging from ball-and-stick simplified descriptions of neuronal excitability to 3D-reconstructed biophysical models of excitatory neurons of rodent and human cortical tissue. For each model, we demonstrate that increasing the distance between the axonal site of AP initiation and the soma markedly increases the bandwidth of neuronal response properties. We finally consider the Liquid State Machine paradigm, exploring the impact of altering the site of AP initiation at the level of a neuronal population, and demonstrate that an optimal distance exists to boost the computational performance of the network in a simple classification task. Copyright

    Improving spatial prioritisation for remote marine regions: optimising biodiversity conservation and sustainable development trade-offs

    Get PDF
    Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia–abiodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation

    Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility

    Get PDF
    Testicular germ cell tumour (TGCT) is the most common cancer in young men. Here we sought to identify risk factors for TGCT by performing whole-exome sequencing on 328 TGCT cases from 153 families, 634 sporadic TGCT cases and 1,644 controls. We search for genes that are recurrently affected by rare variants (minor allele frequency <0.01) with potentially damaging effects and evidence of segregation in families. A total of 8.7% of TGCT families carry rare disruptive mutations in the cilia-microtubule genes (CMG) as compared with 0.5% of controls (P=2.1 × 10¯⁞). The most significantly mutated CMG is DNAAF1 with biallelic inactivation and loss of DNAAF1 expression shown in tumours from carriers. DNAAF1 mutation as a cause of TGCT is supported by a dnaaf1huÂČ⁔⁔h(+/−) zebrafish model, which has a 94% risk of TGCT. Our data implicate cilia-microtubule inactivation as a cause of TGCT and provide evidence for CMGs as cancer susceptibility genes

    Proceedings of the 4<sup>th</sup>BEAT-PCD Conference and 5<sup>th</sup>PCD Training School

    Get PDF
    Primary ciliary dyskinesia (PCD) is an inherited ciliopathy leading to chronic suppurative lung disease, chronic rhinosinusitis, middle ear disease, sub-fertility and situs abnormalities. As PCD is rare, it is important that scientists and clinicians foster international collaborations to share expertise in order to provide the best possible diagnostic and management strategies. ‘Better Experimental Approaches to Treat Primary Ciliary Dyskinesia’ (BEAT-PCD) is a multidisciplinary network funded by EU COST Action (BM1407) to coordinate innovative basic science and clinical research from across the world to drive advances in the field. The fourth and final BEAT-PCD Conference and fifth PCD Training School were held jointly in March 2019 in Poznan, Poland. The varied program of plenaries, workshops, break-out sessions, oral and poster presentations were aimed to enhance the knowledge and skills of delegates, whilst also providing a collaborative platform to exchange ideas. In this final BEAT-PCD conference we were able to build upon programmes developed throughout the lifetime of the COST Action. These proceedings report on the conference, highlighting some of the successes of the BEAT-PCD programme

    Ireland: Submerged Prehistoric Sites and Landscapes

    Get PDF
    Evidence of Ireland's drowned landscapes and settlements presently comprises 50 sites spread across the entire island. These comprise mainly intertidal find spots or small collections of flint artefacts. A handful of fully subtidal sites are known, generally from nearshore regions and consisting, with one exception, of isolated single finds. Evidence of organic remains is also sparse, with the exception of Mesolithic and Neolithic wooden fish traps buried in estuarine sediments under Dublin. The relatively small number of sites is probably due to lack of research as much as taphonomic issues, and thus the current evidence hints at the potential archaeological record which may be found underwater. Such evidence could contribute to knowledge of the coastal adaptations and seafaring abilities of Ireland's earliest inhabitants. Nonetheless, taphonomic considerations, specifically relating to Ireland's history of glaciation, sea-level change and also modern oceanographic conditions likely limit the preservation of submerged landscapes and their associated archaeology. Realistically, the Irish shelf is likely characterised by pockets of preservation, which makes detection and study of submerged landscapes difficult but not impossible. A range of potential routes of investigation are identifiable, including site-scale archaeological survey, landscape-scale seabed mapping, archival research and community engagement
    • 

    corecore