43 research outputs found

    Averaging level control to reduce off-spec material in a continuous pharmaceutical pilot plant

    Get PDF
    The judicious use of buffering capacity is important in the development of future continuous pharmaceutical manufacturing processes. The potential benefits are investigated of using optimal-averaging level control for tanks that have buffering capacity for a section of a continuous pharmaceutical pilot plant involving two crystallizers, a combined filtration and washing stage and a buffer tank. A closed-loop dynamic model is utilized to represent the experimental operation, with the relevant model parameters and initial conditions estimated from experimental data that contained a significant disturbance and a change in setpoint of a concentration control loop. The performance of conventional proportional-integral (PI) level controllers is compared with optimal-averaging level controllers. The aim is to reduce the production of off-spec material in a tubular reactor by minimizing the variations in the outlet flow rate of its upstream buffer tank. The results show a distinct difference in behavior, with the optimal-averaging level controllers strongly outperforming the PI controllers. In general, the results stress the importance of dynamic process modeling for the design of future continuous pharmaceutical processes

    Model Predictive Control of an Integrated Continuous Pharmaceutical Manufacturing Pilot Plant

    Full text link
    This paper considers the model predictive control (MPC) of critical quality attributes (CQAs) of products in an end-to-end continuous pharmaceutical manufacturing pilot plant, which was designed and constructed at the Novartis-MIT Center for Continuous Manufacturing. Feedback control is crucial for achieving the stringent regulatory requirements on CQAs of pharmaceutical products in the presence of process uncertainties and disturbances. To this end, a key challenge arises from complex plant-wide dynamics of the integrated process units in a continuous pharmaceutical process, that is, dynamical interactions between several process units. This paper presents two plant-wide MPC designs for the end-to-end continuous pharmaceutical manufacturing pilot plant using the quadratic dynamic matrix control algorithm. The plant-wide MPC designs are based on different modeling approaches - subspace identification and linearization of nonlinear differential-algebraic equations that yield, respectively, linear low-dimensional and high-dimensional state-space models for the plant-wide dynamics. The closed-loop performance of the plant-wide MPC designs is evaluated using a nonlinear plant simulator equipped with a stabilizing control layer. The closed-loop simulation results demonstrate that the plant-wide MPC systems can facilitate effective regulation of CQAs and flexible process operation in the presence of uncertainties in reaction kinetics, persistent drifts in efficiency of filtration units, temporary disturbances in purity of intermediate compounds, and set point changes. The plant-wide MPC allows for incorporating quality-by-design considerations into the control problem through input and output constraints to ensure regulatory compliant process operation

    Modelling visual-vestibular integration and behavioural adaptation in the driving simulator

    Get PDF
    It is well established that not only vision but also other sensory modalities affect drivers’ control of their vehicles, and that drivers adapt over time to persistent changes in sensory cues (for example in driving simulators), but the mechanisms underlying these behavioural phenomena are poorly understood. Here, we consider the existing literature on how driver steering in slalom tasks is affected by down-scaling of vestibular cues, and propose, for the first time, a computational model of driver behaviour that can, based on neurobiologically plausible mechanisms, explain the empirically observed effects, namely: decreased task performance and increased steering effort during initial exposure, followed by a partial reversal of these effects as task exposure is prolonged. Unexpectedly, the model also reproduced another previously unexplained empirical finding: a local optimum for motion down-scaling, where path-tracking is better than when one-to-one motion cues are available. Overall, our findings suggest that: (1) drivers make direct use of vestibular information as part of determining appropriate steering actions, and (2) motion down-scaling causes a yaw rate underestimation phenomenon, where drivers behave as if the simulated vehicle is rotating more slowly than it is. However, (3) in the slalom task, a certain degree of such underestimation brings a path-tracking performance benefit. Furthermore, (4) behavioural adaptation in simulated slalom driving tasks may occur due to (a) down-weighting of vestibular cues, and/or (b) increased sensitivity in timing and magnitude of steering corrections, but (c) seemingly not in the form of a full compensatory rescaling of the received vestibular input. The analyses presented here provide new insights and hypotheses about simulated driving and simulator design, and the developed models can be used to support research on multisensory integration and behavioural adaptation in both driving and other task domains

    Positive and negative well-being and objectively measured sedentary behaviour in older adults: evidence from three cohorts

    Get PDF
    Background: Sedentary behaviour is related to poorer health independently of time spent in moderate to vigorous physical activity. The aim of this study was to investigate whether wellbeing or symptoms of anxiety or depression predict sedentary behaviour in older adults. Method: Participants were drawn from the Lothian Birth Cohort 1936 (LBC1936) (n = 271), and the West of Scotland Twenty-07 1950s (n = 309) and 1930s (n = 118) cohorts. Sedentary outcomes, sedentary time, and number of sit-to-stand transitions, were measured with a three-dimensional accelerometer (activPAL activity monitor) worn for 7 days. In the Twenty-07 cohorts, symptoms of anxiety and depression were assessed in 2008 and sedentary outcomes were assessed ~ 8 years later in 2015 and 2016. In the LBC1936 cohort, wellbeing and symptoms of anxiety and depression were assessed concurrently with sedentary behaviour in 2015 and 2016. We tested for an association between wellbeing, anxiety or depression and the sedentary outcomes using multivariate regression analysis. Results: We observed no association between wellbeing or symptoms of anxiety and the sedentary outcomes. Symptoms of depression were positively associated with sedentary time in the LBC1936 and Twenty-07 1950s cohort, and negatively associated with number of sit-to-stand transitions in the LBC1936. Meta-analytic estimates of the association between depressive symptoms and sedentary time or number of sit-to-stand transitions, adjusted for age, sex, BMI, long-standing illness, and education, were β = 0.11 (95% CI = 0.03, 0.18) and β = − 0.11 (95% CI = − 0.19, −0.03) respectively. Conclusion: Our findings indicate that depressive symptoms are positively associated with sedentary behavior. Future studies should investigate the causal direction of this association

    The SOS-framework (Systems of Sedentary behaviours): an international transdisciplinary consensus framework for the study of determinants, research priorities and policy on sedentary behaviour across the life course: a DEDIPAC-study.

    Get PDF
    BACKGROUND: Ecological models are currently the most used approaches to classify and conceptualise determinants of sedentary behaviour, but these approaches are limited in their ability to capture the complexity of and interplay between determinants. The aim of the project described here was to develop a transdisciplinary dynamic framework, grounded in a system-based approach, for research on determinants of sedentary behaviour across the life span and intervention and policy planning and evaluation. METHODS: A comprehensive concept mapping approach was used to develop the Systems Of Sedentary behaviours (SOS) framework, involving four main phases: (1) preparation, (2) generation of statements, (3) structuring (sorting and ranking), and (4) analysis and interpretation. The first two phases were undertaken between December 2013 and February 2015 by the DEDIPAC KH team (DEterminants of DIet and Physical Activity Knowledge Hub). The last two phases were completed during a two-day consensus meeting in June 2015. RESULTS: During the first phase, 550 factors regarding sedentary behaviour were listed across three age groups (i.e., youths, adults and older adults), which were reduced to a final list of 190 life course factors in phase 2 used during the consensus meeting. In total, 69 international delegates, seven invited experts and one concept mapping consultant attended the consensus meeting. The final framework obtained during that meeting consisted of six clusters of determinants: Physical Health and Wellbeing (71% consensus), Social and Cultural Context (59% consensus), Built and Natural Environment (65% consensus), Psychology and Behaviour (80% consensus), Politics and Economics (78% consensus), and Institutional and Home Settings (78% consensus). Conducting studies on Institutional Settings was ranked as the first research priority. The view that this framework captures a system-based map of determinants of sedentary behaviour was expressed by 89% of the participants. CONCLUSION: Through an international transdisciplinary consensus process, the SOS framework was developed for the determinants of sedentary behaviour through the life course. Investigating the influence of Institutional and Home Settings was deemed to be the most important area of research to focus on at present and potentially the most modifiable. The SOS framework can be used as an important tool to prioritise future research and to develop policies to reduce sedentary time

    Control of self-assembly in micro- and nano-scale systems

    Full text link
    Control of self-assembling systems at the micro- and nano-scale provides new opportunities for the engineering of novel materials in a bottom-up fashion. These systems have several challenges associated with control including high-dimensional and stochastic nonlinear dynamics, limited sensors for real-time measurements, limited actuation for control, and kinetic trapping of the system in undesirable configurations. Three main strategies for addressing these challenges are described, which include particle design (active self-assembly), open-loop control, and closed-loop (feedback) control. The strategies are illustrated using a variety of examples such as the design of patchy and Janus particles, the toggling of magnetic fields to induce the crystallization of paramagnetic colloids, and high-throughput crystallization of organic compounds in nanoliter droplets. An outlook of the future research directions and the necessary technological advancements for control of micro- and nano-scale self-assembly is provided

    A Hybrid Framework for Simultaneous Process and Solvent Optimization of Continuous Anti-Solvent Crystallization with Distillation for Solvent Recycling

    No full text
    Anti-solvent crystallization is frequently applied in pharmaceutical processes for the separation and purification of intermediate compounds and active ingredients. The selection of optimal solvent types is important to improve the economic performance and sustainability of the process, but is challenged by the discrete nature and large number of possible solvent combinations and the inherent relations between solvent selection and optimal process design. A computational framework is presented for the simultaneous solvent selection and optimization for a continuous process involving crystallization and distillation for recycling of the anti-solvent. The method is based on the perturbed-chain statistical associated fluid theory (PC-SAFT) equation of state to predict relevant thermodynamic properties of mixtures within the process. Alternative process configurations were represented by a superstructure. Due to the high nonlinearity of the thermodynamic models and rigorous models for distillation, the resulting mixed-integer nonlinear programming (MINLP) problem is difficult to solve by state-of-the-art solvers. Therefore, a continuous mapping method was adopted to relax the integer variables related to solvent selection, which makes the scale of the problem formulation independent of the number of solvents under consideration. Furthermore, a genetic algorithm was used to optimize the integer variables related to the superstructure. The hybrid stochastic and deterministic optimization framework converts the original MINLP problem into a nonlinear programming (NLP) problem, which is computationally more tractable. The successful application of the proposed method was demonstrated by a case study on the continuous anti-solvent crystallization of paracetamol

    Process System Engineering for Sustainability in Asia Pacific

    No full text

    A Plant-Wide Dynamic Model of a Continuous Pharmaceutical Process

    No full text
    The pharmaceutical industry his historically benefited from high profit margins for their products, and Over the, years limited efforts have been made to Change the main manufacturing concept from batch into continuous. However, over the past decade, as a result of an increased demand for more efficient and cost-effective processes, interest has grown in the. application of continuous manufacturing to address economical and technical issues the,pharmaceutical field. This option is becoming more viable, particularly with the implementation of new process analytical technology (PAT). In this paper, we present a plant-wide mathematical model. inspired by a recently developed continuous pharmaceutical pilot plant. This model is first used to simulate a base case. that shows. typical limitations in achieving simultaneously high productivity and quality. The main critical quality attribute considered is the purity of the final product. To alleviate the base Case limitations and improve the pilot plant performance, the effect's of Several design parameters are investigated and the most critical are identified. In addition, alternative start-up scenarios are considered to improve the transient performance of the pilot plant, particularly time to Steady state. The environmental footprint of the pilot plant is evaluated and shown to be law
    corecore