265 research outputs found

    Charge-ice dynamics in the negative thermal expansion material Cd(CN)2_2

    Full text link
    We use variable-temperature (150--300\,K) single-crystal X-ray diffraction to re-examine the interplay between structure and dynamics in the ambient phase of the isotropic negative thermal expansion (NTE) material Cd(CN)2_2. We find strong experimental evidence for the existence of low-energy vibrational modes that involve off-centering of Cd2+^{2+} ions. These modes have the effect of increasing network packing density---suggesting a mechanism for NTE that is different to the generally-accepted picture of correlated Cd(C/N)4_4 rotation modes. Strong local correlations in the displacement directions of neighbouring cadmium centres are evident in the existence of highly-structured diffuse scattering in the experimental X-ray diffraction patterns. Monte Carlo simulations suggest these patterns might be interpreted in terms of a basic set of `ice-rules' that establish a mapping between the dynamics of Cd(CN)2_2 and proton ordering in cubic ice VII.Comment: 5 pages, 5 figures, submitted to PR

    Use of Track Plates to Quantify Predation Risk at Small Spatial Scales

    Get PDF
    Spatial heterogeneity in risk is a critical component of predator-prey interactions. However, at small spatial scales, it is difficult to quantify predation risk without altering it. We used track plates to measure local predation risk created by white-footed mouse (Peromyscus leucopus) foraging activity on oak-forest plots in Millbrook, New York. Live gypsy moth pupae (Lymantria dispar) were placed at 2 heights on trees and monitored for predation. Pupae deployed on trees visited by mice were more likely to be eaten than those on trees not visited. Logistic regression indicated that predation rates on gypsy moth pupae were positively correlated with track activity, indicating that areas of concentrated mouse activity were areas of heightened risk for gypsy moths. Survival of individual oat grains placed on and 50 cm from track plates were not statistically different, indicating that mice exhibited no detectable behavioral reaction toward track plates. We conclude that track plates offer an economical and reliable means of quantifying local risk of attack by terrestrial mammals without substantially altering the spatial distribution of risk

    Spatial Localization and Quantitation of Androgens in Mouse Testis by Mass Spectrometry Imaging

    Get PDF
    Androgens are essential for male development and reproductive function. They are transported to their site of action as blood-borne endocrine hormones but can also be produced within tissues to act in intracrine and paracrine fashions. Because of this, circulating concentrations may not accurately reflect the androgenic influence within specific tissue microenvironments. Mass spectrometry imaging permits regional analysis of small molecular species directly from tissue surfaces. However, due to poor ionization and localized ion suppression, steroid hormones are difficult to detect. Here, derivatization with Girard T reagent was used to charge-tag testosterone and 5α-dihydrotestosterone allowing direct detection of these steroids in mouse testes, in both basal and maximally stimulated states, and in rat prostate. Limits of detection were ∼0.1 pg for testosterone. Exemplary detection of endogenous steroids was achieved by matrix-assisted laser desorption ionization and either Fourier transform ion cyclotron resonance detection (at 150 μm spatial resolution) or quadrupole-time-of-flight detection (at 50 μm spatial resolution). Structural confirmation was achieved by collision induced fragmentation following liquid extraction surface analysis and electrospray ionization. This application broadens the scope for derivatization strategies on tissue surfaces to elucidate local endocrine signaling in health and disease

    Facile Synthesis of Functionalised Hyperbranched Polymers for Application as Novel, Low Viscosity Lubricant Formulation Components

    Get PDF
    A novel, previously unreported, method for synthesising hyperbranched (HB) materials is detailed. Their use as additives to produce lubricant formulations that exhibit enhanced levels of wear protection and improved low-temperature oil viscosity and flow is also reported. The lubricant formulations containing HB additives were found to exhibit both significantly lower viscosities and improved in-use film-forming properties than the current industry standard formulations. To achieve this, alkyl methacrylate oligomers (predominantly dimers and trimers) were synthesised using catalytic chain transfer polymerisation. These were then used as functional chain transfer agents (CTA) to control the polymerisation of divinyl benzene (DVB) monomers to generate highly soluble, high polydispersity HB polymers. The level of dimer/trimer purification applied was varied to define its influence on both these HB resultant structures and the resultant HB additives’ performance as a lubricant additive. It was shown that, while the DVB acted as the backbone of the HB, the base oil solubility of the additive was imparted by the presence of the alkyl chains included in the structure via the use of the oligomeric CTAs

    Associations between circulating interferon and kynurenine/tryptophan pathway metabolites: support for a novel potential mechanism for cognitive dysfunction in SLE

    Get PDF
    OBJECTIVE: Quinolinic acid (QA), a kynurenine (KYN)/tryptophan (TRP) pathway metabolite, is an N-methyl-D-aspartate receptor agonist that can produce excitotoxic neuron damage. Type I and II interferons (IFNs) stimulate the KYN/TRP pathway, producing elevated QA/kynurenic acid (KA), a potential neurotoxic imbalance that may contribute to SLE-mediated cognitive dysfunction. We determined whether peripheral blood interferon-stimulated gene (ISG) expression associates with elevated serum KYN:TRP and QA:KA ratios in SLE. METHODS: ISG expression (whole-blood RNA sequencing) and serum metabolite ratios (high-performance liquid chromatography) were measured in 72 subjects with SLE and 73 healthy controls (HCs). ISG were identified from published gene sets and individual IFN scores were derived to analyse associations with metabolite ratios, clinical parameters and neuropsychological assessments. SLE analyses were grouped by level of ISG expression ('IFN high', 'IFN low' and 'IFN similar to HC') and level of monocyte-associated gene expression (using CIBERSORTx). RESULTS: Serum KYN:TRP and QA:KA ratios were higher in SLE than in HC (p<0.01). 933 genes were differentially expressed ≥2-fold in SLE versus HC (p<0.05). 70 of the top 100 most highly variant genes were ISG. Approximately half of overexpressed genes that correlated with KYN:TRP and QA:KA ratios (p<0.05) were ISG. In 36 IFN-high subjects with SLE, IFN scores correlated with KYN:TRP ratios (p<0.01), but not with QA:KA ratios. Of these 36 subjects, 23 had high monocyte-associated gene expression, and in this subgroup, the IFN scores correlated with both KY:NTRP and QA:KA ratios (p<0.05). CONCLUSIONS: High ISG expression correlated with elevated KYN:TRP ratios in subjects with SLE, suggesting IFN-mediated KYN/TRP pathway activation, and with QA:KA ratios in a subset with high monocyte-associated gene expression, suggesting that KYN/TRP pathway activation may be particularly important in monocytes. These results need validation, which may aid in determining which patient subset may benefit from therapeutics directed at the IFN or KYN/TRP pathways to ameliorate a potentially neurotoxic QA/KA imbalance

    Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication

    Get PDF
    Alterations to the gut microbiome are associated with various neurological diseases, yet evidence of causality and identity of microbiome-derived compounds that mediate gut-brain axis interaction remain elusive. Here, we identify two previously unknown bacterial metabolites 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate, structural analogs of carnitine that are present in both gut and brain of specific pathogen–free mice but absent in germ-free mice. We demonstrate that these compounds are produced by anaerobic commensal bacteria from the family Lachnospiraceae (Clostridiales) family, colocalize with carnitine in brain white matter, and inhibit carnitine-mediated fatty acid oxidation in a murine cell culture model of central nervous system white matter. This is the first description of direct molecular inter-kingdom exchange between gut prokaryotes and mammalian brain cells, leading to inhibition of brain cell function

    The SAMI Galaxy Survey: Bayesian Inference for Gas Disk Kinematics using a Hierarchical Gaussian Mixture Model

    Full text link
    We present a novel Bayesian method, referred to as Blobby3D, to infer gas kinematics that mitigates the effects of beam smearing for observations using Integral Field Spectroscopy (IFS). The method is robust for regularly rotating galaxies despite substructure in the gas distribution. Modelling the gas substructure within the disk is achieved by using a hierarchical Gaussian mixture model. To account for beam smearing effects, we construct a modelled cube that is then convolved per wavelength slice by the seeing, before calculating the likelihood function. We show that our method can model complex gas substructure including clumps and spiral arms. We also show that kinematic asymmetries can be observed after beam smearing for regularly rotating galaxies with asymmetries only introduced in the spatial distribution of the gas. We present findings for our method applied to a sample of 20 star-forming galaxies from the SAMI Galaxy Survey. We estimate the global Hα\alpha gas velocity dispersion for our sample to be in the range σˉv\bar{\sigma}_v \sim [7, 30] km s1^{-1}. The relative difference between our approach and estimates using the single Gaussian component fits per spaxel is Δσˉv/σˉv=0.29±0.18\Delta \bar{\sigma}_v / \bar{\sigma}_v = - 0.29 \pm 0.18 for the Hα\alpha flux-weighted mean velocity dispersion.Comment: 23 pages, 12 figures, accepted for MNRA

    The SAMI Galaxy Survey : spatially resolving the main sequence of star formation

    Get PDF
    We present the ∼800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O iii]/H β, [N ii]/H α, [S ii]/H α, and [O i]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.Publisher PDFPeer reviewe
    corecore