research

Charge-ice dynamics in the negative thermal expansion material Cd(CN)2_2

Abstract

We use variable-temperature (150--300\,K) single-crystal X-ray diffraction to re-examine the interplay between structure and dynamics in the ambient phase of the isotropic negative thermal expansion (NTE) material Cd(CN)2_2. We find strong experimental evidence for the existence of low-energy vibrational modes that involve off-centering of Cd2+^{2+} ions. These modes have the effect of increasing network packing density---suggesting a mechanism for NTE that is different to the generally-accepted picture of correlated Cd(C/N)4_4 rotation modes. Strong local correlations in the displacement directions of neighbouring cadmium centres are evident in the existence of highly-structured diffuse scattering in the experimental X-ray diffraction patterns. Monte Carlo simulations suggest these patterns might be interpreted in terms of a basic set of `ice-rules' that establish a mapping between the dynamics of Cd(CN)2_2 and proton ordering in cubic ice VII.Comment: 5 pages, 5 figures, submitted to PR

    Similar works