1,252 research outputs found

    The 105 month Swift-BAT all-sky hard X-ray survey

    Full text link
    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded mask imager on board the Swift observatory. The 105 month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of $8.40\times 10^{-12}\ {\rm erg\ s^{-1}\ cm^{-2}}over90 over 90% of the sky and 7.24\times 10^{-12}\ {\rm erg\ s^{-1}\ cm^{-2}}$ over 50% of the sky in the 14-195 keV band. The Swift-BAT 105 month catalog provides 1632 (422 new detections) hard X-ray sources in the 14-195 keV band above the 4.8{\sigma} significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert AGN in nearby galaxies (z<0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105 month Web site.Comment: Accepted for publication in ApJS. The Swift-BAT 105-month Survey public website can be found at this URL: https://swift.gsfc.nasa.gov/results/bs105mon

    A population of luminous accreting black holes with hidden mergers

    Full text link
    Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous quasars and others showing no such association. Recent observations have shown that a black hole is likely to become heavily obscured behind merger-driven gas and dust, even in the early stages of the merger, when the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations further suggest that such obscuration and black-hole accretion peaks in the final merger stage, when the two galactic nuclei are closely separated (less than 3 kiloparsecs). Resolving this final stage requires a combination of high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray observations to detect highly obscured sources. However, large numbers of obscured luminous accreting supermassive black holes have been recently detected nearby (distances below 250 megaparsecs) in X-ray observations. Here we report high-resolution infrared observations of hard-X-ray-selected black holes and the discovery of obscured nuclear mergers, the parent populations of supermassive-black-hole mergers. We find that obscured luminous black holes (bolometric luminosity higher than 2x10^44 ergs per second) show a significant (P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a sample of inactive galaxies with matching stellar masses and star formation rates (1.1 per cent), in agreement with theoretical predictions. Using hydrodynamic simulations, we confirm that the excess of nuclear mergers is indeed strongest for gas-rich major-merger hosts of obscured luminous black holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the authors' version of the wor

    Identifying the fundamental structures and processes of care contributing to emergency general surgery quality using a mixed-methods Donabedian approach

    Get PDF
    BACKGROUND: Acute Care Surgery (ACS) was developed as a structured, team-based approach to providing round-the-clock emergency general surgery (EGS) care for adult patients needing treatment for diseases such as cholecystitis, gastrointestinal perforation, and necrotizing fasciitis. Lacking any prior evidence on optimizing outcomes for EGS patients, current implementation of ACS models has been idiosyncratic. We sought to use a Donabedian approach to elucidate potential EGS structures and processes that might be associated with improved outcomes as an initial step in designing the optimal model of ACS care for EGS patients. METHODS: We developed and implemented a national survey of hospital-level EGS structures and processes by surveying surgeons or chief medical officers regarding hospital-level structures and processes that directly or indirectly impacted EGS care delivery in 2015. These responses were then anonymously linked to 2015 data from the American Hospital Association (AHA) annual survey, Medicare Provider Analysis and Review claims (MedPAR), 17 State Inpatient Databases (SIDs) using AHA unique identifiers (AHAID). This allowed us to combine hospital-level data, as reported in our survey or to the AHA, to patient-level data in an effort to further examine the role of EGS structures and processes on EGS outcomes. We describe the multi-step, iterative process utilizing the Donabedian framework for quality measurement that serves as a foundation for later work in this project. RESULTS: Hospitals that responded to the survey were primarily non-governmental and located in urban settings. A plurality of respondent hospitals had fewer than 100 inpatient beds. A minority of the hospitals had medical school affiliations. DISCUSSION: Our results will enable us to develop a measure of preparedness for delivering EGS care in the US, provide guidance for regionalized care models for EGS care, tiering of ACS programs based on the robustness of their EGS structures and processes and the quality of their outcomes, and formulate triage guidelines based on patient risk factors and severity of EGS disease. CONCLUSIONS: Our work provides a template for team science applicable to research efforts combining primary data collection (i.e., that derived from our survey) with existing national data sources (i.e., SIDs and MedPAR)

    BAT AGN Spectroscopic Survey. XX. Molecular Gas in Nearby Hard-X-Ray-selected AGN Galaxies

    Get PDF
    We present the host-galaxy molecular gas properties of a sample of 213 nearby (0.01 10.5) tend to have more molecular gas and higher gas fractions than inactive galaxies matched in stellar mass. When matched in star formation, we find AGN galaxies show no difference from inactive galaxies, with no evidence that AGN feedback affects the molecular gas. The higher molecular gas content is related to AGN galaxies hosting a population of gas-rich early types with an order of magnitude more molecular gas and a smaller fraction of quenched, passive galaxies (~5% versus 49%) compared to inactive galaxies. The likelihood of a given galaxy hosting an AGN (L_(bol) > 10⁎⁎ erg s⁻Âč ) increases by ~10–100 between a molecular gas mass of 10^(8.7) M_⊙ and 10^(10.2) M_⊙. AGN galaxies with a higher Eddington ratio (log(L/L_(Edd)) > −1.3) tend to have higher molecular gas masses and gas fractions. The log(N_H/ cm⁻ÂČ ) > 23.4) of AGN galaxies with higher column densities are associated with lower depletion timescales and may prefer hosts with more gas centrally concentrated in the bulge that may be more prone to quenching than galaxy-wide molecular gas. The significant average link of host-galaxy molecular gas supply to supermassive black hole (SMBH) growth may naturally lead to the general correlations found between SMBHs and their host galaxies, such as the correlations between SMBH mass and bulge properties, and the redshift evolution of star formation and SMBH growth

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    Full text link
    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on Gravitational Waves, July 2011, Cardiff, U

    High-Precision, In Vitro Validation of the Sequestration Mechanism for Generating Ultrasensitive Dose-Response Curves in Regulatory Networks

    Get PDF
    Our ability to recreate complex biochemical mechanisms in designed, artificial systems provides a stringent test of our understanding of these mechanisms and opens the door to their exploitation in artificial biotechnologies. Motivated by this philosophy, here we have recapitulated in vitro the “target sequestration” mechanism used by nature to improve the sensitivity (the steepness of the input/output curve) of many regulatory cascades. Specifically, we have employed molecular beacons, a commonly employed optical DNA sensor, to recreate the sequestration mechanism and performed an exhaustive, quantitative study of its key determinants (e.g., the relative concentrations and affinities of probe and depletant). We show that, using sequestration, we can narrow the pseudo-linear range of a traditional molecular beacon from 81-fold (i.e., the transition from 10% to 90% target occupancy spans an 81-fold change in target concentration) to just 1.5-fold. This narrowing of the dynamic range improves the sensitivity of molecular beacons to that equivalent of an oligomeric, allosteric receptor with a Hill coefficient greater than 9. Following this we have adapted the sequestration mechanism to steepen the binding-site occupancy curve of a common transcription factor by an order of magnitude over the sensitivity observed in the absence of sequestration. Given the success with which the sequestration mechanism has been employed by nature, we believe that this strategy could dramatically improve the performance of synthetic biological systems and artificial biosensors

    Inhibition of the Intrinsic but Not the Extrinsic Apoptosis Pathway Accelerates and Drives Myc-Driven Tumorigenesis Towards Acute Myeloid Leukemia

    Get PDF
    Myc plays an important role in tumor development, including acute myeloid leukemia (AML). However, MYC is also a powerful inducer of apoptosis, which is one of the major failsafe programs to prevent cancer development. To clarify the relative importance of the extrinsic (death receptor-mediated) versus the intrinsic (mitochondrial) pathway of apoptosis in MYC-driven AML, we coexpressed MYC together with anti-apoptotic proteins of relevance for AML; BCL-XL/BCL-2 (inhibiting the intrinsic pathway) or FLIPL (inhibiting the extrinsic pathway), in hematopoietic stems cells (HSCs). Transplantation of HSCs expressing MYC into syngeneic recipient mice resulted in development of AML and T-cell lymphomas within 7–9 weeks as expected. Importantly, coexpression of MYC together with BCL-XL/BCL-2 resulted in strongly accelerated kinetics and favored tumor development towards aggressive AML. In contrast, coexpression of MYC and FLIPL did neither accelerate tumorigenesis nor change the ratio of AML versus T-cell lymphoma. However, a change in distribution of immature CD4+CD8+ versus mature CD4+ T-cell lymphoma was observed in MYC/FLIPL mice, possibly as a result of increased survival of the CD4+ population, but this did not significantly affect the outcome of the disease. In conclusion, our findings provide direct evidence that BCL-XL and BCL-2 but not FLIPL acts in synergy with MYC to drive AML development

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Dark matter effective field theory scattering in direct detection experiments

    Get PDF
    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.National Science Foundation (U.S.)United States. Dept. of EnergyNatural Sciences and Engineering Research Council of CanadaSpain. Ministerio de Economia y Competitividad (MultiDark
    • 

    corecore