80 research outputs found

    Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches

    Full text link
    Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 106^{-6} keV1^{-1} cm2^{-2} s1^{-1}, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 107^{-7} keV1^{-1} cm2^{-2} s1^{-1} and show good prospects for the application of this technology in IAXO. Finally, we present some ideas and results for reducing the energy threshold of these detectors below 1 keV, using high-transparent windows, autotrigger electronics and studying the cluster shape at different energies. As a high flux of axion-like-particles is expected in this energy range, a sub-keV threshold detector could enlarge the physics case of axion helioscopes.Comment: Proceedings of 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014

    Performance of micromegas detectors in the CAST Experiment

    Get PDF
    CERN Axion Solar Telescope (CAST) experiment is searching for axions coming from the Sun. Inside transverse magnetic fields, axions can be converted into X-rays, which can be detected by X-ray detectors. The expected energy of the signal in CAST is in the 1-10 keV range. Low noise and low background detectors are necessary to increase the sensitivity of the experiment. Micro Mesh Gaseous Structure (micromegas) detectors have been used in CAST since the beginning, providing good energy and spatial resolution for CAST's needs. CAST has been intensely studying micromegas detectors to develop new technologies. Initially, CAST detectors consisted of a micromegas, a Time Projection Chamber (TPC) and a Charged Couple Device (CCD), however the improvements in micromegas technologies encouraged CAST to replace the TPC with 2 new micromegas detectors. In some periods during CAST run, ultra low background has been observed in one of the micromegas detectors and it is being investigated through simulations and laboratory tests carried out at Canfranc Underground Laboratory. If this low background is indeed not a systematic effect, it can open new possibilities on rare event searches

    Photoperiod affects the phenotype of mitochondrial complex I mutants

    Get PDF
    Plant mutants for genes encoding subunits of mitochondrial Complex I (CI, NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis thaliana CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit, and the previously characterized ndufs4 CI mutant. In long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Col-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher AOX content/activity and displayed a growth-retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than ndufs8.1 ndufs8.2 under short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD as compared to the WT. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the WT. The typical LD acclimation of carbon, nitrogen-assimilation and redox-related parameters was not observed in ndufs8.1 ndufs8. Similarly, NAD(H) content, that was higher in SD condition in both mutants than in Col-0, did not adjust under LD. We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of Complex I mutants and photoperiod acclimation in Arabidopsis

    Low X-ray bakground measurements at the Underground Canfranc Laboratory

    Full text link
    Micromegas detectors, thanks to the good spatial and temporal discrimination capabilities, are good candidates for rare event search experiments. Recent X-ray background levels achieved by these detectors in the CAST experiment have motivated further studies in the nature of the background levels measured. In particular, different shielding configurations have been tested at the Canfranc Underground Laboratory, using a microbulk type detector which was previously running at the CAST experiment. The first results underground show that this technology, which is made of low radiative materials, is able to reach background levels up to 2×1072 \times 10^{-7}keV1^{-1}s1^{-1}cm2^{-2} with a proper shielding. Moreover, the experimental background measurements are complemented with Geant4 simulations which allow to understand the origin of the background, and to optimize future shielding set-ups.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    The T-REX project: Micromegas for rare event searches

    Get PDF
    The T-REX project aims at developing novel readout techniques for Time Projection Chambers for experiments searching for Rare Events. The Micromegas detectors are a good option, because of their good performance regarding low background levels, energy and time resolution, gain and stability of operation. In the present we will shortly refer to two particular cases, on one hand their performance in the CAST experiment and on the other the studies carried out within NEXT, a neutrinoless double-beta decay experiment

    Seasonality and spatial heterogeneity of the surface ocean carbonate system in the northwest European continental shelf

    Get PDF
    In 2014–5 the UK NERC sponsored an 18 month long Shelf Sea Biogeochemistry research programme which collected over 1500 nutrient and carbonate system samples across the NW European Continental shelf, one of the largest continental shelves on the planet. This involved the cooperation of 10 different Institutes and Universities, using 6 different vessels. Additional carbon dioxide (CO2) data were obtained from the underway systems on three of the research vessels. Here, we present and discuss these data across 9 ecohydrodynamic regions, adapted from those used by the EU Marine Strategy Framework Directive (MSFD). We observed strong seasonal and regional variability in carbonate chemistry around the shelf in relation to nutrient biogeochemistry. Whilst salinity increased (and alkalinity decreased) out from the near-shore coastal waters offshore throughout the year nutrient concentrations varied with season. Spatial and seasonal variations in the ratio of DIC to nitrate concentration were seen that could impact carbon cycling. A decrease in nutrient concentrations and a pronounced under-saturation of surface pCO2 was evident in the spring in most regions, especially in the Celtic Sea. This decrease was less pronounced in Liverpool Bay and to the North of Scotland, where nutrient concentrations remained measurable throughout the year. The near-shore and relatively shallow ecosystems such as the eastern English Channel and southern North Sea were associated with a thermally driven increase in pCO2 to above atmospheric levels in summer and an associated decrease in pH. Non-thermal processes (such as mixing and the remineralisation of organic material) dominated in winter in most regions but especially in the northwest of Scotland and in Liverpool Bay. The large database collected will improve understanding of carbonate chemistry over the North-Western European Shelf in relation to nutrient biogeochemistry, particularly in the context of climate change and ocean acidification

    Improved search for solar chameleons with a GridPix detector at CAST

    Get PDF
    We report on a new search for solar chameleons with the CERN Axion Solar Telescope (CAST). A GridPix detector was used to search for soft X-ray photons in the energy range from 200 eV to 10 keV from converted solar chameleons. No significant excess over the expected background has been observed in the data taken in 2014 and 2015. We set an improved limit on the chameleon photon coupling, beta(gamma) less than or similar to 5.7 x 10(10) for 1 < beta(m) < 10(6) at 95% C.L. improving our previous results by a factor two and for the first time reaching sensitivity below the solar luminosity bound for tachocline magnetic fields up to 12.5 T
    corecore