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21 Key message:

22 We describe seasonal and regional variability in carbonate chemistry around the north-west 

23 European shelf, from a large and unique 1.5 year dataset of biogeochemical sampling combined 

24 with underway pCO2 data. The data has improved understanding of carbonate chemistry in 

25 relation to nutrient biogeochemistry, showing seasonal variations between the well-mixed 

26 inner shelf and seasonally stratified outer shelf regions. 
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28 Abstract

29 In 2014-5 the UK NERC sponsored an 18 month long Shelf Sea Biogeochemistry research 

30 programme which collected over 1500 nutrient and carbonate system samples across the NW 

31 European Continental shelf, one of the largest continental shelves on the planet.  This involved 

32 the cooperation of 10 different Institutes and Universities, using 6 different vessels. Additional 

33 carbon dioxide (CO2) data were obtained from the underway systems on three of the research 

34 vessels. Here, we present and discuss these data across 9 ecohydrodynamic regions, adapted 

35 from those used by the EU Marine Strategy Framework Directive (MSFD). We observed strong 

36 seasonal and regional variability in carbonate chemistry around the shelf in relation to nutrient 

37 biogeochemistry. Whilst salinity increased (and alkalinity decreased) out from the near-shore 

38 coastal waters offshore throughout the year nutrient concentrations varied with season. Spatial 

39 and seasonal variations in the ratio of DIC to nitrate concentration were seen that could impact 

40 carbon cycling. A decrease in nutrient concentrations and a pronounced under-saturation of 

41 surface pCO2 was evident in the spring in most regions, especially in the Celtic Sea. This 

42 decrease was less pronounced in Liverpool Bay and to the North of Scotland, where nutrient 

43 concentrations remained measurable throughout the year. The near-shore and relatively 

44 shallow ecosystems such as the eastern English Channel and southern North Sea were 

45 associated with a thermally driven increase in pCO2 to above atmospheric levels in summer 

46 and an associated decrease in pH. Non-thermal processes (such as mixing and the 

47 remineralisation of organic material) dominated in winter in most regions but especially in the 

48 northwest of Scotland and in Liverpool Bay. The large database collected will improve 

49 understanding of carbonate chemistry over the North-Western European Shelf in relation to 

50 nutrient biogeochemistry, particularly in the context of climate change and ocean acidification. 

51 1.0 Introduction

52

53 Continental shelf seas are important net sinks of atmospheric CO2, occupying only 7% 

54 of the global sea surface area (Chen & Borges, 2009). However, there are considerable 

55 uncertainties in the contributions of individual shelf seas to regional (and global) carbon 

56 budgets (Borges, 2005). Continental shelves have high levels of biological activity due to cross 

57 shelf and riverine nutrient supply, and to rapid organic matter recycling from the close pelagic-

58 benthic coupling on the shelf (Liu et al., 2010). The seawater partial pressure of CO2 (pCO2) is 
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59 controlled by seasonal changes in temperature and phytoplankton productivity (Zeebe & Wolf-

60 Gladrow, 2001). Additional factors such as coccolithophore calcification (Harley et al., 2010) 

61 can influence seasonal variations in seawater pCO2. 

62 The northeast Atlantic continental shelf is a net CO2 sink, of about -17 Tg C yr-1 

63 (compared with the global estimated shelf sink of -0.2 Pg C yr-1; Laruelle et al., 2014) and thus 

64 significant on both a regional and global basis as a hotspot of CO2 uptake. It comprises both 

65 well-mixed and stratified regions, which have different capacities to take up CO2. Generally 

66 the well mixed near-shore heterotrophic ecosystems act as sources of CO2 to the atmosphere 

67 and the seasonally stratified autotrophic continental shelf systems act as sinks of atmospheric 

68 CO2 (Borges, 2005; Chen & Borges, 2009). An example of the former is the southern North 

69 Sea (Thomas et al., 2004) and the south western English Channel (Borges, 2005; Marrec et al., 

70 2013, 2015). An example of the latter is the seasonally stratified northern North Sea, which is 

71 an order of magnitude stronger CO2 sink than the well-mixed eastern English Channel (Thomas 

72 et al., 2004, 2007). In the boundary between the off-shelf and on-shelf waters, a continuous 

73 injection of nutrients can arise due to processes such as internal tides, internal waves, eddies 

74 and slope current mixing, which can enhance productivity (Pingree, 1975; Garcia-Soto and 

75 Pingree, 1998) and the potential CO2 sink. 

76 Monitoring the seawater total alkalinity (TA) and dissolved inorganic carbon (DIC), 

77 along with its pCO2, will help describe the oceanic carbonate system. The exact definition of 

78 TA is complicated but it can be summarised as the stoichiometric sum of bases in solution 

79 (Wolf-Gladrow et al., 2007). Many processes can influence TA such as benthic calcification 

80 and dissolution, the growth of coccolithophore blooms (Harlay et al., 2010); the contribution 

81 of organic matter (Koeve et al., 2012; Hoppe et al., 2012); changes in riverine input (Hydes & 

82 Hartman, 2012) and nitrate uptake (Brewer & Goldman, 1976).  

83 The anthropogenic increase in atmospheric CO2 and uptake by seawater is driving a 

84 decline in oceanic pH known as ocean acidification (OA) (Caldeira & Wickett, 2003; Doney 

85 et al., 2009; Gattuso & Hansson, 2011). It is also important to measure nutrient concentrations 

86 as an indication of potential primary production, as this will influence pCO2 (and therefore 

87 seawater pH) through the balance between photosynthesis and respiration.

88 The general features of the annual cycle of nutrient and plankton concentrations on the 

89 northwest European shelf have been established for some time (Cushing, 1973; Johnston, 1973; 

90 Gerlach, 1988; Nelissen & Stefels, 1988). Within the North Sea, the NERC North Sea 

91 Programme in 1988-89, provided the first data set with sufficient information to allow seasonal 
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92 changes in nutrient concentrations and plankton biomass to be investigated quantitatively 

93 (Howarth et al., 1996). Seasonal variation in carbonate chemistry has also been followed at 

94 time series sites (eg: the L4 and Stonehaven sites during the 2008-2010 DEFRApH project, 

95 Hydes et al., 2011) or through surveys around the NW European shelf (e.g. Thomas et al., 2004, 

96 which was based on 4 surveys of the North Sea).

97 UK-SSB was established in 2014 to improve our understanding of carbon and nutrient 

98 cycling within shelf seas. As part of the ‘CANDYFLOSS’ (Carbon and Nutrient DYnamics 

99 and Fluxes Over Shelf Systems) component of UK-SSB, sampling was carried out across the 

100 entire NW European continental shelf for DIC, TA and inorganic nutrients. The UK-SSB 

101 sampling campaign was a large marine research community effort that started in January 2014 

102 and continued for eighteen months, involving the cooperation of 10 institutes and universities 

103 and 6 vessels. One aim of the present study was to increase the density and spatial coverage of 

104 carbon and nutrient sampling across the entire NW European shelf, using the shelf wide 

105 sampling component of the UK Shelf Sea Biogeochemistry research programme (UK-SSB, 

106 http://www.uk-ssb.org/). Our aim was to describe how the biogeochemical variables are 

107 distributed and interrelated on the shelf, both through the year and across 9 ecohydrodynamic 

108 regions, adapted from those used by the EU Marine Strategy Framework Directive (MSFD).

109

110 2.0 Materials and methods

111

112 2.1 Division of data into Ecohydrodynamic regions

113 Ecohydrodynamic regions of the NW European Shelf are defined for reporting under 

114 the EU Marine Strategy Framework Directive (MSFD). The regions have been adapted from 

115 those defined in Charting Progress 2 (UKMMAS, 2010) and Bresnan et al., (2015), with the 

116 addition of the Irish Continental Shelf and the Norwegian Trench. They are distinguished by 

117 water depth (and seasonal stratification), proximity to the coast, riverine inputs (salinity) and 

118 water temperature ranges.  These regions and the sampling positions are shown in Figure 1. 

119
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121

122

123 Figure 1: Map of the sampling positions (black dots) during UK-SSB (2014-2015). Coloured 

124 areas 1—9 show the UK ecohydrodynamic regions used for MSFD reporting (adapted from 

125 Bresnan et al., 2015 to now include Ireland and the Norwegian Trench and showing the 200m 

126 contour). White plusses show the time series sites SH (Stonehaven) and L4.

127 Complex tidal fronts and topography separate the well-mixed and seasonally stratified 

128 waters across the shelf. This will strongly influence the biogeochemical dynamics of the area 

129 (as shown by Simpson & Hunter, 1974). The biogeochemical divide along the 50m contour 

130 separates the seasonally stratified northern North Sea (region 1) from the shallower, well-mixed 

131 southern North Sea (region 2). The North Sea is influenced by the Atlantic Ocean to the North 

132 (Huthnance et al., 1997) and by riverine input, especially to the south (Hydes et al., 1999; 

133 Bresnan et al., 2015). The northern North Sea acts as a down-welling system (Huthnance et al., 

134 2009). In the southern North Sea the entire water column remains well mixed throughout the 

135 year, likewise the eastern Channel (region 3) has shallow (0-100m) and tidally well mixed 

136 waters. The deeper western Channel and Celtic Sea (region 4) has strong seasonal stratification 

137 with Atlantic influences in the Celtic Sea (Pingree, 1993; Simpson & Hunter, 1974). The 

138 relatively shallow and enclosed Irish Sea and especially Liverpool Bay (region 5) have a high 

139 influence of fresh water input (Hydes & Hartman, 2012; Greenwood et al., 2011).

140 Waters west of Scotland and the Minches (region 6) are made up of North Atlantic 

141 Ocean waters and form part of the continental shelf current but are modified by coastal 
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142 influences (Bresnan et al, 2015). The Scottish and Irish continental shelf (region 7) are 

143 characterised by seasonal stratification and, as defined here, have a western limit of the 200m 

144 depth contour. This region is influenced both by exchanges with the North Atlantic deep water 

145 and by water flowing from the south in the shelf edge current (Pingree, 1993; Huthnance, 1995 

146 &1997; Hydes et al 2004).  The deep-sea waters beyond the 200m contour are oceanic in origin 

147 and the Atlantic Approaches (region 8) encompasses the Rockall Trough and the 

148 Faeroe/Shetland Channel. The Norwegian Trench (region 9) is the main outflow path for water 

149 leaving the North Sea, and it is permanently stratified (Van Leeuwen et al., 2015).  

150

151 2.2 Sample collection

152 Between January 2014 and August 2015, multiple organisations collected samples from 

153 the underway water supply of their vessels on a daily basis whenever they were at sea around 

154 the NW European shelf (Figure 1). Data were obtained from RRS Discovery (8 cruises), RRS 

155 James Cook (1 cruise), RV Cefas Endeavour (34 cruises), RV Celtic Explorer (6 cruises), RV 

156 Scotia (7 cruises), RV Corystes (15 cruises), with additional samples from the fixed point 

157 monitoring sites Stonehaven in the North Sea and L4 in the English Channel (Figure 1). All 

158 data are available from BODC http://www.uk-ssb.org/data/ and as listed in the references from 

159 Humphreys et al., 2017 (a-h). 

160 On approximately 1500 occasions, surface samples were collected from the underway 

161 seawater supply (nominal 5m depth). For DIC and TA analysis the samples were collected into 

162 borosilicate glass bottles (preserved with 0.05 ml saturated mercuric chloride solution 

163 following Dickson et al., 2007), and the nutrient samples were filtered and frozen. At the time 

164 of sampling the temperature and salinity was recorded from the underway sensors. Additional 

165 near surface (0-20 m) samples were taken using a rosette sampler on the UK-SSB cruises in 

166 the Celtic Sea, on the RV Cefas Endeavour and on a supporting cruise to the Hebrides Shelf 

167 (Painter at al., 2016; Hartman et al., 2017). 

168

169 2.3 Chemical analysis

170 DIC and TA were mostly (>95%) measured using VINDTA 3C (Marianda, Germany) 

171 instruments in our shore based laboratory in Southampton. DIC analysis on the VINDTA 

172 involves reaction with 10% phosphoric acid, which converts DIC to CO2 gas. This is carried 
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173 by nitrogen into the coulometer cell where it reacts with monoethanolamine forming a titratable 

174 acid, which causes fading of the blue indicator. Responding to the colour change, an electrical 

175 current generates base to remove the acid and restore the indicator to the original colour. The 

176 amount of CO2 can be estimated from the total current required (corrected for a blank), and 

177 DIC concentration can then be calculated given the sample volume. TA was measured by 

178 titration with hydrochloric acid (HCl ~0.10 mol l-1) using an open cell procedure, with a pH 

179 half-cell electrode (glass bodied Orion 8101SC, Ross, USA) and an Ag/AgCl reference 

180 electrode (model 6.0729.100, Metrohm, Switzerland). A modified Gran plot approach was used 

181 to calculate TA (Humphreys, 2015). Approximately 5% of the DIC and TA measurements were 

182 conducted using the Apollo SciTech (USA) DIC Analyzer (AS-C3) and Total Alkalinity 

183 Titrator (AS-ALK2). The AS-C3 functions similarly to the VINDTA 3C except that the final 

184 CO2 measurement is by infrared absorbance (LI-COR). The AS-ALK2 performs a 

185 potentiometric titration with 0.1M HCl to determine the TA. 

186 In order to calibrate the results, seawater reference material (RM) obtained from A.G. 

187 Dickson (Scripps Institution of Oceanography, USA) were analysed each day (Dickson et al., 

188 2003). Precision was assessed through repeated measurements of pooled seawater samples 

189 (n>3) before each batch of sample analysis. The 1σ precision for the whole dataset was 

190 estimated as ±2.6 μmol kg-1 for DIC and ±2.7 μmol kg-1 for TA for VINDTA measurements. 

191 For the Apollo measurements, precision was estimated as ±4.0 μmol kg-1 and ±3.9 μmol kg-1 

192 for DIC and TA respectively (Humphreys et al., 2017, this issue).

193 During the SSB shelf wide sampling, underway pCO2 was measured on-board the RV 

194 Cefas Endeavour and on the NERC research vessel RRS Discovery using PML-Dartcom 

195 systems (Kitidis et al., 2012). Briefly, this comprises of a vented ‘showerhead’ equilibrator, 

196 Peltier cooler for partial drying of the equilibrated gas stream, non-dispersive infrared detection 

197 (Licor; LI-840) and associated mechanical/electronic hardware. The system was calibrated 

198 against three reference gases (BOC Gases, UK; nominal concentrations 250, 380 and 450 ppmv 

199 CO2 in synthetic air mixtures; changing from 450ppm to 600ppm on the RV Cefas Endeavour 

200 from November 2014) which were referenced against primary reference gases (National 

201 Oceanic and Atmospheric Administration, 244.9 and 444.4 ppm CO2). A recent at-sea inter-

202 comparison with a similar but independent system, along with other carbonate observations, 

203 found the system was precise to within ±4 μatm (Ribas-Ribas et al., 2014). The atmospheric 

204 pCO2 was calculated from monthly averaged pCO2 measured at Mace Head (53.33° N, 9.90° 

205 W) (Humphreys et al., this issue). 
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206 Inorganic nutrients were analysed using a ‘Bran and Luebbe AA3’ segmented flow 

207 colorimetric nutrient auto-analyser. The analytical methods were phosphate and silicate using 

208 Kirkwood (1989) and nitrate (plus nitrite) with Brewer and Riley (1965) methods. The standard 

209 deviation for duplicate measurements was within 2% and quality was assured through daily 

210 use of certified reference materials provided by KANSO (Japan). Sampling protocols and 

211 methodologies were carried out where possible according to the GO-SHIP nutrient analytical 

212 procedures manual (Hydes et al., 2010) including assessment of detection limits (eg: 0.1 µmol 

213 kg-1 for nitrate). 

214

215 2.4 Calculations

216 The carbonate system is characterised through knowing any two parameters out of TA, 

217 DIC, pCO2 or pH and then using equilibrium equations and constants (Park, 1969) and the 

218 CO2SYS program (Lewis et al., 1998) to calculate the remaining parameters. The shelf wide 

219 UK-SSB measurements of DIC, TA temperature, salinity and nutrient data, were used to 

220 calculate pH (free scale, as recommended by Waters & Millero, 2013), pCO2, calcite (Ωc) and 

221 aragonite (Ωa) saturation using the CO2SYS program (Lewis et al., 1998) with the Mehrbach 

222 constants (according to Dickson & Millero, 1987). Known uncertainties associated with 

223 calculations in CO2SYS using bottle DIC and TA results as inputs lead to an uncertainty of 

224 ±6µatm in the calculation of pCO2 (eg: Millero et al., 2002). These arise from inaccuracies in 

225 the measurements and in the determination of dissociation constants. Calculated pCO2 values 

226 were checked against direct measurements of pCO2 measured by underway systems on 60 

227 occasions on-board the RV Cefas Endeavour and RRS Discovery research vessels. The average 

228 difference was 2 μatm with a variation of up to ±27 μatm between the calculated and measured 

229 pCO2.  We calculated pH from DIC and TA, despite this pair not being ideal for this purpose 

230 (errors will be ±0.006; Millero et al., 2002), in order to give a general picture of seasonal and 

231 regional variations in pH on the shelf. 

232 The thermal and non-thermal components of pCO2 were calculated by assessing the 

233 change in pCO2 relative to the average of all winter data in the survey, the winter mean state 

234 (386 μatm), then calculating the thermal component at the mean winter temperature (9.1°C) 

235 following Takahashi et al., (2002). The residual between the total and thermal component of 

236 change was calculated to assess the non-thermal, or largely biological, component. 
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238 3.0 Results 

239 All results are presented with January to March defined as winter, April-June as spring, 

240 July-September as summer and October-December as autumn when describing the seasonal 

241 distribution in biogeochemical variables. Table 1 shows the seasonal mean average (and 

242 standard deviation) for each variable and region. As the sampling was not distributed evenly in 

243 space and time some regions remain under-sampled, especially the Minches (region 6) in 

244 autumn and in the Norwegian Trench (region 9), as indicated in Table 1.

245

246 3.1 Hydrographic variability

247 Figure 2 shows the seasonal variation in sea surface temperature (SST) around an 

248 average of 14 °C. The coldest surface waters (average 7.65 °C) were seen in winter, especially 

249 in the North Sea (region 1, Table 1a). The warmest surface waters were generally observed to 

250 the south and in the summer, (eg: average of 18.27 °C Eastern English Channel (region 3). 

251 Warm sea surface temperatures (16.69 °C), were still apparent in the autumn in the Eastern 

252 English Channel (region 3). Overall the regional variations were dominated by a decrease in 

253 SST to the north (Figure 2).
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254

255 Figure 2: Seasonal maps of sea surface temperature (SST), using sensor data taken at the point 

256 of sampling on the SSB surveys. Figures 2-9, 12-15 are all mapped from 48 to 62°N, 16°W to 

257 8°E showing winter (Jan-Mar), spring (Apr-Jun), summer (Jul-Sep) and autumn (Oct-Dec).  

258

259 Figure 3 shows the seasonal and regional variation in sea surface salinity (SSS). 

260 Regional variation dominated over seasonal variability and the shelf waters were fresher than 

261 the oceanic waters. The mean SSS for the whole data set was 34.5 with higher salinities from 

262 oceanic influence observed to the west on the Atlantic northwest approaches (35.6, region 8). 

263 A tongue of high salinity water was observed in the northern North Sea (region 1). This feature 

264 was especially prominent in summer (Figure 2, where the average SSS was 34.6, Table 1a), 

265 showing the influence of the advection of Atlantic water into this region. 
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268

269 Figure 3: Seasonal maps of sea surface salinity (SSS) as practical salinity, using sensor data 

270 taken at the point of sampling on the SSB surveys. 

271

272 3.2 Chemical variability

273 3.2.1 Nutrients 

274 Figures 4 and 5 show the seasonal and regional variation in surface inorganic nutrients. 

275 Generally nitrate concentrations were relatively high offshore, in the Atlantic waters off shelf 

276 (region 7) compared to the inner shelf regions in all seasons. In contrast, the silicate 

277 concentrations were generally lower on the outer shelf compared with the inner shelf (see 

278 Figure 4 and 5). For example to the west of Ireland (in region 7) the average nitrate 

279 concentration in winter was relatively high (7.9 µmol kg -1) when the silicate concentrations 

280 were relatively low (4.6 µmol kg -1) as shown in Table 1.

281 Seasonally the highest nitrate and silicate concentrations were observed in winter, in all 

282 regions (Figures 4 and 5). For example, the winter nutrient concentrations were high in the 

283 Irish Sea (region 5) with average winter nitrate and silicate of 9.9 µmol kg -1 and 7.5 µmol kg 

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



12

284 -1 respectively.  However, relatively low nitrate concentrations (6.3 µmol kg -1) were observed 

285 in winter off the Scottish west coast (region 6). 

286 In spring the lowest nitrate concentrations were observed in the northern North Sea 

287 (average 0.5 µmol kg -1, region 1) and the Minches (1.0 µmol kg -1, region 6) but remained 

288 relatively high offshore to the north of Scotland (6.7 µmol kg -1, region 8) and in the Irish Sea 

289 (3.9 µmol kg -1, region 5) . By summer, nitrate concentrations were depleted in most regions 

290 (Figures 4 and 5).  However in Liverpool Bay (in region 5), nutrient concentrations were never 

291 fully depleted although the largest seasonal changes were observed here, with a winter to 

292 summer decrease of 8 µmol kg-1 for nitrate and 5 µmol kg-1 for silicate (see also Tables 1a and 

293 1b). On the Scottish continental shelf (region 7), to the northeast of Scotland, nitrate 

294 concentrations also remained above detection (average 1.2 µmol kg-1) into summer. In the 

295 autumn, nutrient concentrations had started in increase in Liverpool Bay (in region 5), earlier 

296 than in other regions (Figures 4 and 5). 

297 Phosphate concentrations were measured but have not been mapped here as they were 

298 uniform around the whole of the UK shelf (with a winter mean of 0.55 µmol kg-1, Table 1a), 

299 although some deviations in the ratio of nitrate to phosphate are discussed in section 4.1. 
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302

303 Figure 4: Seasonal maps of sea surface nitrate concentrations, from SSB bottle samples. 

304

305 Figure 5: Seasonal maps of silicate concentrations, from SSB bottle samples.
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306 3.2.2 Total Alkalinity

307 Figure 6 shows the seasonal and regional TA distribution. The annual mean TA for the 

308 whole dataset was 2320 µmol kg-1. There was a relatively large range of values, especially in 

309 the northern North Sea (region 1), where the seasonal mean TA increased from 2275 µmol kg-1 

310 in spring to 2310 µmol kg-1 in winter (Table 1b). In the high salinity Atlantic waters of the 

311 northwest approaches (region 8), seasonal mean TA values were relatively high (above 2330 

312 µmol kg-1) and the seasonal range was small (Table 1b).  Overall, TA distribution was generally 

313 similar to salinity with higher TA offshore throughout the year and the lowest values on the 

314 shelf. 

315

316

317 Figure 6: Seasonal maps of total alkalinity (TA) measurements, from SSB bottle samples.

318

319 3.2.3 Dissolved Inorganic Carbon

320 Figure 7 shows the seasonal and regional distribution of DIC. The largest seasonal 

321 change in DIC was in the northern North Sea (region 1) where there was over 100 µmol kg-1 
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322 decrease in the seasonal mean DIC from winter to spring (Figure 7, Table 1b). The lowest DIC 

323 concentrations observed were in spring in the northern North Sea (2034 µmol kg-1, region 1) 

324 and the Minches (region 6, around 2065 µmol kg-1) and in summer on the continental shelf 

325 (region 7, around 2097 µmol kg-1, Table 1b). DIC concentrations peaked in winter and 

326 decreased in the spring and summer in all regions (Table 1b), therefore DIC showed a similar 

327 distribution to nutrient concentrations. 

328

329

330 Figure 7: Dissolved Inorganic Carbon (DIC) measurements, from SSB bottle samples.

331

332 3.2.4 Partial pressure of carbon dioxide

333 Figure 8 shows the seasonal and regional variations in measured and calculated pCO2. 

334 Taking an atmospheric pCO2 of 400 µatm (Humphreys et al., this issue) then under-saturated 

335 values (relative to atmospheric pCO2) are indicated by the blue colours and over-saturated by 

336 the warmer colours in Figure 8. Generally, the highest values were seen in the autumn and the 

337 lowest values for each region were in the spring (Figure 8).

338 In the seasonally stratified northern North Sea (region 1) pCO2 values were generally 

339 under-saturated from winter (352 µatm, Table 1b) to summer. However, there is some variation 
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340 within this region where relatively oversaturated values were observed close to the Scottish 

341 coast from autumn to winter (Figure 8). The largest seasonal variation in pCO2 was observed 

342 in the southern North Sea, (region 2) with an increase of over 100 μatm between the spring and 

343 autumn (Figure 8, Table 1b).  

344 A seasonal over-saturation in CO2 was especially prominent in the relatively shallow 

345 inner shelf regions in summer and autumn (Figure 8 and Table 1b). For example, a marked 

346 increase in pCO2 from spring to summer was observed in the relatively shallow eastern English 

347 Channel (region 3, from 333 to 452 µatm, Table 1b). 

348

349

350 Figure 8: Surface pCO2, calculated from bottle samples analysed for DIC/TA (using 

351 CO2SYS) and measured pCO2 from underway systems on the RRS Discovery and RV Cefas 

352 Endeavour (2014-2015).

353

354 In the Celtic Sea (region 4) pCO2 was predominantly under-saturated throughout the 

355 year (Figure 8). However, pCO2 increased near to the coast in autumn when the average was 

356 407 µatm (Table 1b). In contrast, the relatively shallow Irish Sea (region 5) showed a general 
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357 year round over-saturation in pCO2 (with seasonal averages above 409 µatm, Table 1b) except 

358 for in spring.   

359 3.2.5   Calculated pH

360 Figure 9 shows the seasonal and regional variation in calculated pH around the shelf. It 

361 is important to note that the colour scale is reversed in Figure 9 for easier comparisons with 

362 pCO2 as an inverse relationship is expected.  Overall, calculated pH was lowest around the 

363 coast in autumn and the highest calculated pH was observed in spring (Figure 9). For example 

364 in the northern North Sea (region 1) the seasonal mean pH in spring was 8.19 when pCO2 was 

365 low (see Table 1b). In the southern North Sea (region 2) there was a spring to summer decrease 

366 in the calculated pH (from 8.15 to 8.05, Table 1b). Likewise, in the eastern Channel (region 3) 

367 the pH decreased to a similar extent from spring to summer (Table 1b). In the Irish Sea (region 

368 5) and the Minches (region 6) the seasonal mean pH was lowest in winter (when pCO2 was 

369 high) and increased in the spring (from 8.06 to 8.18 in region 6, Table 1b). 

370

371

372 Figure 9: pH (freescale), calculated from bottle samples analysed for DIC/TA (using 

373 CO2SYS).
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374

375 4.0      Discussion

376 4.1 An overview of seasonal variations in relation to regions

377 Dividing the UK-SSB dataset into 9 ecohydrodynamic regions revealed large regional 

378 variations in carbonate chemistry parameters in relation to nutrients and hydrography. Figure 

379 10 illustrates the relationship between hydrography (SST) and surface nutrient concentrations 

380 s for each of the regions considered. 

381

382

383 Figure 10: Measured nitrate concentrations and sea surface temperature for each month and 

384 region.

385
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386 Overall, there was a winter peak in nutrient concentrations, then a rapid decrease in the 

387 spring and summer months. The rapid depletion in nitrate (and DIC) concentrations in spring 

388 are likely to result from their assimilation in the production of organic material by 

389 phytoplankton, during the ‘spring bloom’ (Frigstad et al., 2015). The dominant pattern on the 

390 shelf was for low nitrate concentrations throughout the spring to summer months, in warming 

391 water. Then, in the autumn months there was an increase in nitrate concentrations (as the water 

392 cools), observed in all regions where data were available (Figure 10). The increase in nitrate 

393 concentrations during autumn months is likely to be due to the remineralisation of organic 

394 matter, the break down the thermal stratification of the surface waters and the onset of vertical 

395 mixing. This seasonal variability is as expected at temperate latitudes (Smith et al., 2014) and 

396 gives a triangular distribution to the data points (Figure 10). Similar patterns would be expected 

397 for DIC, especially in winter months when seasonal stratification breaks down and nitrate plus 

398 DIC accumulates in the surface waters. 

399 The winter peak in nutrient (and DIC) concentrations are also likely due to organic 

400 matter remineralisation and the convective mixing of colder high nutrient and DIC rich waters 

401 from below (Körtzinger et al., 2008). Maximum concentrations were reached just before the 

402 return of stratification in spring in all regions (Figure 10). However, in the Northern North Sea 

403 the autumn SST is relatively cold and associated with higher nitrate concentrations compared 

404 with other regions (Figure 10).  The relationship between SST and nitrate concentrations is less 

405 clear in the Southern North Sea (region 2, Figure 10). Relatively low salinities were observed 

406 in the east of the southern North Sea in summer (region 2, in Figure 3) due to fresh water 

407 entering the North Sea from the major European continental rivers (such as the Rhine). 

408 Therefore, riverine inputs are likely to have contributed to the higher nitrate concentrations 

409 seen in this region. 

410 In the well mixed eastern English Channel (region 3) there was a pronounced 

411 ‘triangular’ shape in the relative nitrate and SST variability (Figure 10). The nitrate 

412 concentrations increased earlier in the year (compared with other regions), starting in the 

413 summer whilst SST was still relatively high. This may be due to the continuous injection of 

414 nutrients into the euphotic zone that is seen in many well mixed systems (L’Helguen et al., 

415 1996).  High nitrate (and silicate, Figure 5) concentrations were observed for most of the year 

416 in the eastern Channel (region 3), probably from the remineralisation of organic material in 

417 these relatively shallow and well-mixed regions. 
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418 In the western English Channel and the Celtic Sea (region 4), an area characterised by 

419 seasonal thermal stratification (Smyth et al., 2010; Smith et al., 2014), the highest nitrate 

420 concentrations were generally observed in the winter (Figure 10, from January to March).  In 

421 the central Irish Sea (region 5) nitrate was never depleted, even during spring and summer, 

422 possibly due to riverine inputs (Greenwood et al., 2011). The seasonal mean salinity remained 

423 relatively low (~33.9, Table 1a) throughout the year in the Irish Sea and Liverpool Bay (region 

424 5) showing a high influence of fresh water input to the region (Hydes & Hartman, 2012;  

425 Greenwood et al., 2011). Silicate concentrations in the Irish Sea (region 5) were at least 1 µmol 

426 kg-1 higher than other regions throughout the year (Figure 5), probably due to this riverine 

427 influence. Seasonal coverage is relatively poor for the Minches (region 6) and the Norwegian 

428 trench (region 9), as seen in Figure 10.

429 In the more open ocean continental shelf (region 7) and Atlantic northwest approaches 

430 (region 8) there was a linear relationship between nitrate and temperature, likely due to the 

431 spring nitrate depletion and autumn nitrate regeneration (Figure 10). To the far north of 

432 Scotland (in region 7) nitrate concentrations remained high (> 5 µmol kg-1) until the summer 

433 months (Figure 10), probably due to the general northward delay in bloom timing (Siegel et 

434 al., 2002).  From the linear relationship seen in Figure 10 the nitrate concentrations could 

435 almost be predicted from SST, as shown by Sathyendranath et al., (2001); Henson et al., (2003). 

436

437 4.2 Stoichiometry

438 Figures 11(a-c) shows the relationship between nitrate and phosphate.  These figures 

439 confirm the similarity in spatial distributions between nitrate and phosphate, although most of 

440 the values were below the open ocean ‘Redfield’ stoichiometric ratio of 16:1 (Redfield et al., 

441 1963; Anderson and Sarmiento, 1994). In the present study, some especially low nitrate values, 

442 relative to phosphate concentrations, were seen in both the southern North Sea (region 2, Figure 

443 11a) and the Irish Sea (region 5, Figure 11b). Likewise there is a relatively low N:P in the 

444 Celtic Sea (region 4, Figure 11b). The N:P relationship approaches the 16:1 (Anderson and 

445 Sarmiento, 1994) ratio in the more Atlantic influenced off shelf areas (regions 6-8, Figure 11c).

446 Nutrient concentrations are likely to be higher near the coast than in the open ocean, 

447 particularly where there are riverine inputs. However, a key feature established in the North 

448 Sea Project data (Hydes et al., 1999) was that the maximum nitrate concentrations observed in 

449 the Central North Sea (Hydes et al., 1999) and in the Irish Sea (Gowen et al., 2002 and 2008) 
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450 were below those observed in ocean waters adjacent to the shelf (Hydes et al., 2004). This 

451 resulted in low nitrate to phosphate (N:P) ratios (Hydes et al 1999; Gowen et al., 2002), 

452 probably from denitrification in the sediments of these relatively shallow (and well mixed) seas 

453 (Setzinger and Giblin., 1996). Recently Kitidis et al. (2017) also showed that sediment 

454 anaerobic ammonium oxidation and denitrification removed 6-9 % of the nitrate in the Celtic 

455 Sea over an annual cycle. 

456 Figures 11(d-f) show the relationship between DIC and nitrate. Overall, there was a 

457 positive correlation between DIC and nitrate around the northwest European Shelf. However 

458 there was large variability in this relationship within and between the regions. For example in 

459 the northern North Sea (region 1) most points were above the line shown in Figure 11d (that 

460 represents the open ocean C:N of 7.3, Anderson and Sarmiento, 1994). In the southern North 

461 Sea (region 2) there was a pronounced variability in the C:N relationship at very low nitrate 

462 concentrations (Figure 11d). In the Celtic Sea (region 4) there was a variation in the C:N ratio 

463 as the nutrient concentration increased (Figure 11e). However, on the Irish and Scottish shelf 

464 (region 7) most of the points followed this line (Figure 11f). 

465

466

467

468 Figure 11: A comparison of the (a-c) nitrate and phosphate concentrations (in groups of 3 

469 regions for ease of viewing) showing the Anderson and Sarmiento (1994) N:P ratio of 16:1 as 
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470 a solid line and (d-f) the relationship between DIC and nitrate with the C:N ratio of 7.3 as a 

471 solid line (Anderson and Sarmiento, 1994). 

472

473 A positive correlation was generally observed between DIC and nitrate, as both are 

474 influenced by productivity and the breakdown of organic material. Where the variability in the 

475 C:N relationship was pronounced at very low nitrate concentrations, for example in the 

476 southern North Sea (region 2), this may be a further indication of denitrification. This process 

477 is significant in the North Sea (Hydes et al, 1999) and could contribute to the relatively low 

478 nitrate values observed in both the N:P and C:N ratios (Figure 11) in this region. However, 

479 riverine input can be an additional source of variability in the C:N relationship in the more 

480 coastal systems through both nutrient input (Greenwood et al., 2011) and DIC input (McGrath 

481 et al., 2016). 

482 In the Celtic sea (region 4), the points were above the line at low nitrate concentrations 

483 and below the line at higher concentrations (> 8µmol kg -1, Figure 11e). So, the C:N ratio was 

484 initially high in the potentially productive periods (periods of productivity were identified for 

485 the Celtic Sea by Hickman et al., this issue), when nitrate concentrations were lower. Then the 

486 C:N decreased at high nitrate concentrations. High C:N suggests a more efficient recycling of 

487 nitrate compared with carbon and that the organic material exported from the surface would be 

488 carbon enriched (Sambrotto et al., 1993). Therefore spatial and seasonal changes in C:N could 

489 have a significant impact on carbon cycling and export off the shelf via the continental shelf 

490 pump (Gruber and Galloway, 2008; Painter et al., 2017).  Variation in the C:N will also have 

491 implications for methods that calculate productivity from the depletion in DIC or nitrate 

492 (Frigstad et al., 2015 and references therein) using the ‘standard’ C:N Redfield ratio of 6.6:1 

493 (Anderson and Sarmiento, 1994). 

494

495 4.3 Controls on seawater pCO2

496 The solubility of CO2 depends mainly on temperature (increased solubility at low 

497 temperature, decreased at high temperatures). In turn, biological production processes tend to 

498 decrease surface water pCO2, whereas respiration and remineralisation processes tend to 

499 increase surface water pCO2 (Shadwick et al., 2011). The dominance of these processes varies 

500 through the year and with region (Takahashi et al., 2002; Jiang et al., 2013).  To study this 

501 further we assessed the physical and biological forcing on pCO2.  Figure 12 shows the thermal 
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502 component of the change in pCO2 calculated following Takahashi et al. (2002). Figure 13 

503 shows the residual between the total and thermal component of change and represents the non-

504 thermal component, which we assume to be largely biologically driven. This is either through 

505 the remineralisation of organic matter in the surface layer, or the addition of remineralised 

506 nutrients from the deep layer through vertical mixing. The magnitude of this component may 

507 be reduced by any air-sea gas exchange. 

508 Our study showed the dominance of thermal control (Figure 12) on the pCO2 especially 

509 in the spring and summer. Temperature can be the main factor influencing the pCO2 variability, 

510 through the control on stratification and stabilisation of the water column triggering production. 

511 The spring time decrease in pCO2, to under saturated levels was seen in all regions and 

512 coincided with a large decrease in nutrients in these productive waters (Table 1), as shown by 

513 Thomas et al., (2005). Biological production can impact surface pCO2 in summer in stratified 

514 systems by the presence of subsurface phytoplankton blooms below the (shallow) thermocline 

515 (Shadwick et al., 2011). Non-thermal or biological control dominated from autumn through to 

516 winter (Figure 13) due largely to regeneration from the respiration of organic material. 

517 There were clear regional variations in the balance of thermal and non-thermal controls. 

518 For example in the central region of the northern North Sea (region 1) there was a thermally 

519 driven increase in pCO2 of about 70 µatm from winter to spring (Figure 12), and a non-thermal 

520 decrease of 110 µatm (Figure 13). This region seasonally stratifies and DIC is transported off 

521 shelf (Huthnance et al., 2009). Overall, in the seasonally stratified northern North Sea (region 

522 1), the control of pCO2 was predominantly non-thermal (biological, as shown in Figure 13), as 

523 has been shown previously (Thomas et al, 2005 & 2006; Van Leeuwen et al., 2015). In contrast, 

524 in the well-mixed, shallower southern North Sea (region 2) thermal controls on pCO2 

525 dominated (Figure 12).  In this region, water temperature was the dominant control on both 

526 pCO2 and nutrient concentrations (Thomas et al, 2005 & 2006; Van Leeuwen et al., 2015).

527
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529

530 Figure 12: The thermal component of the change in pCO2 calculated following Takahashi et 

531 al. (2002). 

532

533 Figure 13: The non-thermal component of the change in pCO2 (calculated following Takahashi 

534 et al., 2002 as the residual between the total and thermal component of change). 
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535

536 Our study suggested that the eastern English Channel (region 3) was over-saturated in 

537 CO2 in the autumn (Figure 8). This was when non-thermal heterotrophic processes, such as 

538 organic matter remineralisation, dominated (Figure 13). An autumnal over-saturation of CO2 

539 has been observed previously in the eastern English Channel (Frankignoulle et al., 1996; Jiang 

540 et al., 2013). Borges (2005) also suggested that the permanently well-mixed and shallow 

541 ecosystems within the eastern English Channel were seasonally over-saturated and a seasonal 

542 source of CO2. 

543 Overall pCO2 in the Celtic Sea (region 4) was close to the atmospheric pCO2 for most 

544 of the year (Figure 8), with a pronounced under-saturation in spring (to a mean average of 364 

545 µatm, Table 1). This is similar to the observations made by Kitidis et al., (2012). The seasonal 

546 variations in pCO2 were dominated by biology rather than advection in the northern part of the 

547 western English Channel (Figure 13).  In contrast, the data suggested that in the Irish Sea 

548 (region 5) pCO2 was over-saturated for most of the year (Figure 8). There was a dominance of 

549 non-thermal controls on pCO2 in autumn and winter in the Irish Sea (region 5), and the non-

550 thermal influences were especially high near to the coast (Figure 13). pCO2 remained higher 

551 here than if it were in equilibrium with the atmosphere for most of the year (Table 1), except 

552 for in the spring when there was a pronounced under-saturation in the surface waters. 

553 In the Minches (region 6), the non-thermal component was especially high in winter 

554 and had little influence for the rest of the year. In the wider sub-polar Atlantic, the seasonal 

555 cycle of pCO2 was dominated by the mixing of cold water (leading to increased CO2 solubility). 

556 This was seen to the west of Ireland (region 7) where both the thermal and non-thermal 

557 components increased pCO2 in the autumn and winter.  

558 In summary, the largest thermal component observed was in the summer to the south 

559 of the UK (Figure 12), especially in the southern North Sea (region 2) and the eastern English 

560 Channel (region 3) where the highest SST had been observed in summer (Figure 2).  The largest 

561 non-thermal component observed (Figure 13) was in winter, especially around the coast in 

562 Liverpool Bay (region 5) and the Minches (region 6). In all of these well-mixed and shallower 

563 regions, it is likely that the decaying bloom, and breakdown of organic material (Carr et al., 

564 this issue), increased the pCO2 in autumn and winter. As these regions remain mixed the pCO2 

565 super-saturation persists until the next spring. 

566 Our seawater pCO2 data has been used to assess potential sources and sinks around the 

567 shelf (Kitidis et al., 2018 in prep.). The direction of air-sea gas fluxes are driven by 
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568 concentration differences between the seawater and atmosphere. Where pCO2 in seawater was 

569 under-saturated compared with the atmospheric pCO2 it suggests that this area will be a sink; 

570 if it exceeded pCO2 in air then this suggests the region will be a source to the atmosphere. 

571 However, the magnitude of the flux is modulated by other processes, for which wind speed can 

572 be used as a proxy (Wanninkhof, 2014). This is explored further in Kitidis et al. (2018, in prep.) 

573 and the NW European shelf was found to be net autotrophic and a CO2 sink over the period of 

574 our study.

575 The separation into ecohydrodynamic regions (after Bresnan et al., 2015) was done to 

576 distinguish the different hydrographical regions. These separations correspond well to the 

577 biogeochemical variability observed from the data. However, if you go further into the details 

578 then more complex and dynamic hydrographical systems are observed, such as tidal fronts 

579 between the year round well-mixed and seasonally stratified ecosystems, shelf break systems 

580 and estuarine systems. The on-shelf tidal frontal zones between the permanently well-mixed 

581 and seasonally stratified areas are particularly productive and can influence CO2 exchange and 

582 examples of these frontal regions are seen in the Irish Sea (Simpson & Hunter; 1974) and in 

583 the Celtic Sea (Pingree & Griffiths, 1978). For example within the seasonally stratified Celtic 

584 Sea (region 4) the southern part of the western English Channel and the waters around Land’s 

585 End (Marrec et al., 2013), can be distinguished in the hydrography. Within the western Channel 

586 and Celtic Sea (region 4) there was a clear division between the northern sub-region, where 

587 there was a dominance of non-thermal control of pCO2 in winter and the southern part where 

588 thermal effects dominated (Figure 12). 

589

590 4.4  Changes in alkalinity and pH 

591 The TA and salinity distribution is generally similar as both are strongly influenced by 

592 evaporation, riverine freshwater inputs and precipitation. TA can be considered as conservative 

593 in the open ocean where TA and salinity tend to be linearly related (Lee et al., 2006; Jiang et 

594 al., 2014). Near coastal waters, with a strong salinity gradient, are ideal places to get a TA: S 

595 linear relationship. However in the current study the real near coastal water area was not 

596 assessed, and it was difficult to get see a linear TA:S relationship in such diverse ecosystems 

597 although the low salinity water was generally associated with low TA values. The offshore 

598 increase in salinity (Figure 3) and TA (Figure 6) dominated over any seasonal variations.
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599 Many processes result in a TA increase in near coastal waters (Cai et al., 2011; Thomas 

600 et al., 2007), such as the increase in TA by the oxidation of organic material in marine 

601 sediments (Froelich et al., 1979). The southern North Sea (region 2) and the eastern Channel 

602 (region 3) both showed large variability in TA compared with other regions as these shallow 

603 areas are influenced by high organic material (Salt et al., 2016). Coastal regions are also 

604 influenced by riverine input, where the presence of calcareous limestone bedrock can increase 

605 TA in shelf waters. For example, the high TA river Liffey near Dublin inputs to the Irish Sea 

606 (region 5) although in this case the effects will only be observed near to the coast due to a low 

607 riverine discharge (McGrath et al. 2016). Previous studies have shown some seasonality in TA 

608 due to productivity, for example Hydes & Hartman (2012) showed higher TA during the spring 

609 bloom in the Liverpool Bay sub-region of the Irish Sea (region 5). On the northwest European 

610 shelf large coccolithophore blooms can also strongly influence alkalinity and calcification will 

611 affect the TA and seawater pCO2 (Harlay et al., 2010) 

612 In the present study, large seasonal variations in pH were observed around the shelf, 

613 (up to 0.2 units, Table 1b). The pH range is influenced by DIC, TA and changes in temperature 

614 and by the balance between photosynthesis and respiration.  There is generally an inverse 

615 relationship between pCO2 and pH, due to the increase in H+ ions (i.e. decreased pH) when 

616 CO2 dissolves in seawater (Zeebe and Wolf-Gladrow, 2001).  pH increased in spring in all 

617 regions (Table 1b) when photosynthesis dominated over respiration. pH then decreased in 

618 summer in most regions (Table 1b): for example in the Southern North Sea (region 2) pH 

619 decreased from spring to summer (8.15 to 8.05, Table1), as respiration became more important 

620 (Provoost et al., 2010). Previous studies found similar large seasonal variations in pH (up to 

621 0.3) especially off the east coast of Scotland, around the Stonehaven time series site (Hydes et 

622 al., 2011; Ostle et al., 2016). 

623 In the North Sea (regions 1 and 2) and the eastern Channel (region 3), where 

624 temperature control on pCO2 dominated, there was a winter to summer increase in pCO2 (and 

625 associated pH decrease), possibly influenced by the remineralisation of organic matter in these 

626 shallower regions. The pCO2 increase (and pH decrease) at the end of summer, is likely to be 

627 due to the influence of temperature and the remineralisation of organic matter by microbial 

628 processes through the sediment-water interface in these relatively shallow regions. The process 

629 of denitrification over muddy sediments could also influence pH although we would expect a 

630 pH increase due to this process (Froelich et al., 1979; Provoost et al., 2010). 
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631 The strong pH fluctuations in shelf seas and coastal waters (Duarte et al., 2013; Ostle 

632 et al, 2016; Waldbusser & Salisbury, 2014) imply that the concept of ocean acidification (OA) 

633 is difficult to transpose to coastal ecosystems, where the rates and variability of OA are higher 

634 than in the open ocean (Doney et al., 2009).  The occurrence of vibrant biological communities 

635 in areas with large regional and seasonal variations in seawater pH imply that they possess an 

636 inbuilt tolerance to pH changes (Bates et al., 2014; Kitidis et al., 2017). This tolerance may 

637 occur due to the ability of seawater to buffer some of these pH changes through its alkalinity. 

638 TA will buffer the hydrogen ions so the buffering capacity of seawater is a direct function of 

639 TA as regions with high TA will be less prone to rapid changes in OA. The DIC:TA relationship 

640 for example can be strongly linked to different buffer factors (eg: Egleston et al., 2010). Studies 

641 such as ours give some indication of the present pH variability over the NW European Shelf, 

642 which will be useful in the future in the context of ocean acidification. This study also identified 

643 regions where the lowest TA values coincided with the lowest pH, such as the Southern North 

644 Sea (region 2, see Table 1). The low TA may suggest regions with a decreased capacity to 

645 buffer pH changes in the future. 

646 Future OA could have detrimental effects on calcifying organisms (Feely et al., 2009; 

647 Riebesell & Tortell, 2011; Doney et al., 2011). In the current study, calcite (Figure 14) and 

648 aragonite (Figure 15) were not generally under-saturated. Calcite saturation was always in the 

649 range of 1.5 to 4.8 and aragonite was virtually never under-saturated (1.0 to 3.1; about 0.3% of 

650 total measurements were <1). Aragonite is the most soluble form of calcium carbonate in the 

651 marine environment and saturation will decrease as pH decreases (Feely et al., 2009), giving 

652 an indication of susceptibility of a region to ocean acidification.  Low saturation coupled with 

653 low pH would affect the ability of organisms to form shells and skeletons (Fabry et al., 2008). 

654 Model data from Artioli et al., (2014) showed localised potential under-saturation of aragonite 

655 in the German Bight by the end of the 21st century. Changes in temperature, pCO2 and 

656 calcification would all further increase the vulnerability of these regions to OA in the future 

657 (Bates et al., 2014).

658
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660

661 Figure 14: Calcite saturation (Ωc) calculated from SSB bottle DIC and TA. 

662

663

664 Figure 15: Aragonite saturation (Ωa) calculated from SSB bottle DIC and TA. 
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666 As the seasonal variation in pH can be large (Ostle et al., 2016) long-term time series 

667 measurements are required to detect any inter-annual trends (Bates et al., 2014). Ideally, over 

668 25 years of consistently measured data are required to detect pH trends (Henson et al., 2016) 

669 although ICES studies in the central North Sea (Beare et al., 2013) and southern North Sea 

670 (Duarte et al., 2013) have reported a decadal decline in pH. This decline in pH was associated 

671 with physical drivers (Salt et al., 2013) and changes in nutrients and eutrophication (Provoost 

672 et al., 2010). Hydes et al., (2011) showed a trend of decreasing pH around the NW European 

673 Shelf of -0.002 to -0.004 pH units per year between 1995 and 2009. If sample collection were 

674 to be continued around the shelf, the present study could be used to extend this emerging time 

675 series. 

676 5.0 Conclusions

677 We have synthesised the spatial distributions of nutrients and carbonate chemistry 

678 around the northwest European shelf. The data were divided into 9 ecohydrodynamic regions 

679 including well-mixed inner shelf and seasonally stratified outer shelf regions.  The general 

680 trends in carbon chemistry were related to changes in the hydrography and nutrients 

681 (representing biological activity and riverine input). The seasonally stratified regions, (for 

682 example off shore on the Continental slope, region 7), showed a clear inverse relationship 

683 between SST and surface nitrate (and DIC) concentrations. This was in contrast to the well 

684 mixed regions, such as the eastern channel (region 3), where the regeneration of nutrients 

685 occurred at higher temperatures. The regional variations in the DIC to nutrient relationship will 

686 have implications for calculations of carbon export. 

687 The effects of thermal and non-thermal processes influencing pCO2 have been shown 

688 for different seasons and regions. For example in the near-shore and relatively shallow 

689 ecosystems such as the eastern English Channel (region 3) and southern North Sea (region 2) 

690 there was a thermally driven increase in pCO2 to above atmospheric levels in summer. Non-

691 thermal processes (such as mixing and the remineralisation of organic material) dominated in 

692 winter, especially to the northwest of Scotland (region 6) and in Liverpool Bay (region 5). In 

693 all regions, the seawater pCO2 was under-saturated in spring in respect to the atmospheric 

694 equilibrium. In the well-mixed inner shelf regions pCO2 was over-saturated for the rest of the 

695 year whereas pCO2 remained under-saturated throughout the year in the seasonally stratified 

696 regions such as the Celtic sea (region 4). The seasonal variations in under and over saturation 

697 of pCO2 will have implications in calculations of shelf wide net CO2 flux, presented and 
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698 discussed in Kitidis et al., (in prep., 2018). TA concentrations remained relatively constant 

699 seasonally and showed a similar distribution to salinity, as both are influenced in part by 

700 evaporation and precipitation. However, the lowest TA and lowest pH values were observed at 

701 the end of winter in the northern North Sea (region 1). We have shown that calcite saturation 

702 values are currently above 1.0 in all regions and such results will be useful for studies of ocean 

703 acidification in the future. 

704 This synthesis provided a 18 month ‘snapshot’ of the diverse and dynamic ecosystems 

705 around the northwest European shelf.  It is complicated to catch the variability of complex 

706 ecosystems as the ecohydrodynamic regions studied were very diverse and dynamic. Within 

707 each region further subdivisions were identified and the seasonal variation in biogeochemistry 

708 within these regions will have implications for using such broad hydrographic divisions to 

709 study biogeochemical variations on the northwest European shelf. Incorporating high 

710 frequency underway data (as was available for pCO2 measurements) improved both the 

711 seasonal and spatial coverage over what was possible with bottle sampling alone. Generally, 

712 the wintertime period was under sampled, as were some regions year round, including the 

713 Norwegian Trench (region 9) and the Minches (region 6). Addressing these issues could be the 

714 focus for further sampling campaigns. The increased use of autonomous measurements on 

715 robust platforms (such as buoys and autonomous surface vehicles) would help in this regard. 

716 The data have sufficient coherence and breadth of coverage to develop models that 

717 would link physical and biogeochemical processes. The SSB data set could also be used to 

718 extend existing studies to create a time series.  Once we have a longer time series, we could 

719 use this data set to quantify trends in pH and pCO2, so we recommend that the sampling 

720 continue to quantify year-to-year variability and elucidate trends in the data. In conclusion, the 

721 large database collected as part of the shelf wide sampling within the SSB project will improve 

722 the understanding of carbonate chemistry in relation to nutrient biogeochemistry over the 

723 North-Western European Shelf, particularly in the context of climate change and ocean 

724 acidification.

725
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1085 Table 1 a) The mean average (and standard deviation) for the hydrograph and nutrient data in winter (jan-mar), spring (apr-jun), summer (jul-sep) 
1086 and autumn (oct-dec) for each of the 9 ecohydrographic regions (numbered 1-9). Where insufficient samples exist, n/a has been used. 

1087

Temperature (°C)  
 Practical 
salinity   

Phosphate (µmol 
kg-1)  

 Silicate 
(µmol kg-1)   

Nitrite 
(µmol kg-1)   

jan-
mar apr-jun jul-sep oct-dec

jan-
mar apr-jun jul-sep oct-dec

jan-
mar apr-jun jul-sep oct-dec

jan-
mar apr-jun jul-sep oct-dec

jan-
mar apr-jun jul-sep oct-dec

1 7.65 13.78 14.36 11.65 33.26 34.11 34.61 34.78 0.54 0.08 0.09 0.36 3.59 0.95 0.75 3.07 0.12 0.03 0.06 0.18

(0.52) (2.44) (1.27) (0.45) (3.9) (0.40) (0.61) (0.02) (0.08) (0.11) (0.08) (0.01) (1.55) (0.57) (0.60) (0.49) (0.08) (0.07) (0.10) (0.01)
2 7.86 12.40 17.69 14.24 34.08 34.56 34.43 34.67 0.35 0.10 0.16 0.50 2.13 0.80 1.92 3.72 0.14 0.02 0.10 0.59

(0.85) (1.27) (1.67) (1.28) (1.53) (0.36) (0.42) (0.34) (0.12) (0.07) (0.13) (0.44) (1.48) (0.53) (1.77) (2.13) (0.10) (0.05) (0.15) (0.46)
3 9.44 12.25 18.27 16.69 34.95 30.64 34.86 35.15 0.53 0.08 1.91 0.35 5.10 2.88 3.62 3.76 0.10 0.11 0.09 0.19

(0.70) (1.93) (0.80) (1.25) (0.54) (10.81) (0.29) (0.11) (0.05) (0.07) (6.46) (0.26) (2.33) (9.18) (5.72) (1.44) (0.06) (0.25) (0.13) (0.14)
4 9.48 11.32 16.63 15.84 35.22 35.27 34.12 33.39 0.53 0.21 0.09 0.27 4.23 2.14 0.80 2.27 0.10 0.07 0.08 0.23

(0.57) (1.56) (2.68) (5.89) (0.14) (0.17) (4.42) (6.43) (0.12) (0.16) (0.16) (0.23) (0.90) (0.93) (1.17) (1.62) (0.08) (0.05) (0.29) (0.17)
5 8.00 10.53 15.37 14.06 33.80 33.81 34.02 34.19 0.64 0.36 0.25 0.95 7.54 3.00 2.13 5.31 0.13 0.11 0.15 0.23

(1.40) (1.84) (1.14) (0.89) (0.78) (0.81) (0.46) (0.36) (0.22) (0.21) (0.18) (2.15) (3.34) (2.30) (1.19) (5.59) (0.18) (0.09) (0.23) (0.36)
6 9.35 12.14 12.47 n/a 34.45 34.00 34.24 n/a 0.53 0.19 0.24 n/a 4.53 1.29 1.43 n/a 0.06 0.10 0.25 n/a

(0.39) (0.73) (0.35) n/a (0.09) (0.35) (0.16) n/a (0.02) (0.12) (0.03) n/a (0.32) (0.78) (0.39) n/a (0.01) (0.07) (0.18) n/a
7 8.74 9.70 14.01 18.41 34.53 34.94 35.11 34.87 0.59 0.42 0.13 0.36 4.56 1.54 0.48 2.65 0.27 0.23 0.06 0.31

(0.58) (1.80) (1.05) (10.87) (0.50) (0.42) (0.27) (0.2) (0.04) (0.27) (0.11) (0.03) (1.01) (0.79) (0.29) (0.43) (0.13) (0.14) (0.05) (0.18)
8 9.88 11.31 16.16 14.12 35.39 35.65 35.54 35.58 0.62 0.43 0.10 n/a 3.30 2.25 0.36 n/a 0.07 0.17 0.04 n/a

(0.15) (1.49) (1.69) (0.39) (0.04) (0.99) (0.15) (0.00) n/a (0.18) (0.07) n/a n/a (1.39) (0.17) n/a n/a (0.06) (0.05) n/a
9 n/a 10.75 14.03 n/a n/a 34.26 34.65 n/a n/a 0.17 0.04 n/a n/a 1.29 0.42 n/a n/a 0.16 0.01 n/a

n/a (1.91) (0.80) n/a n/a (0.61) (0.43) n/a n/a (0.14) (0.02) n/a n/a (0.56) (0.29) n/a n/a (0.26) n/a n/a
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1091 Table 1 b) The mean average (and standard deviation) for nitrate and carbonate data in winter (jan-mar), spring (apr-jun), summer (jul-sep) and 
1092 autumn (oct-dec) for each of the 9 ecohydrographic regions (numbered 1-9). Where insufficient samples exist, n/a has been used. 

1093

Nitrate (µmol 
kg-1)    

DIC (µmol 
kg-1)    

TA (µmol 
kg-1)    pH    

pCO2 
(µatm)    

jan-
mar apr-jun jul-sep oct-dec jan-mar apr-jun jul-sep oct-dec jan-mar apr-jun jul-sep oct-dec jan-mar apr-jun jul-sep oct-dec

jan-
mar apr-jun jul-sep oct-dec

1 7.40 0.51 0.33 5.42 2133.27 2033.72 2063.51 2110.95 2309.71 2275.17 2291.11 2294.62 8.18 8.19 8.15 8.09 351.51 331.07 362.89 427.85

(1.52) (1.42) (0.56) (0.01) (23.38) (31.65) (17.24) (0.45) (29.42) (28.38) (19.02) (7.21) (0.15) (0.06) (0.04) (0.01) (81.80) (52.03) (73.54) (8.78)
2 4.60 1.11 0.66 6.10 2147.12 2097.67 2110.98 2144.89 2319.90 2314.85 2316.10 2331.90 8.12 8.15 8.05 8.06 382.05 376.22 483.40 469.14

(3.22) (2.70) (1.06) (7.39) (44.05) (18.89) (37.72) (24.54) (31.15) (29.59) (42.68) (32.12) (0.03) (0.07) (0.10) (0.01) (31.20) (58.66) (79.58) (11.83)
3 9.56 4.13 3.77 3.45 2133.52 2102.09 2089.84 2102.80 2326.21 2341.57 2316.24 2323.77 8.13 8.19 8.09 8.10 377.89 333.08 452.43 436.64

(3.51) (10.42) (9.91) (3.24) (8.08) (36.38) (14.69) (10.39) (14.26) (26.17) (12.97) (10.25) (0.02) (0.06) (0.02) (0.04) (19.73) (54.69) (29.21) (48.60)
4 6.55 2.05 0.49 3.37 2140.49 2111.78 2086.91 2116.19 2332.68 2333.32 2335.20 2337.16 8.12 8.17 8.14 8.12 388.10 354.57 389.88 405.53

(3.69) (2.44) (2.28) (4.06) (7.93) (23.78) (18.09) (21.57) (9.60) (10.09) (14.97) (16.05) (0.01) (0.03) (0.04) (0.04) (13.26) (31.18) (49.11) (44.77)
5 9.86 3.94 1.03 5.27 2143.20 2095.01 2076.72 2110.78 2298.23 2294.04 2293.79 2305.37 8.07 8.14 8.12 8.08 435.29 364.82 409.35 446.75

(6.09) (3.86) (1.25) (4.54) (18.26) (52.36) (25.23) (12.83) (26.64) (30.14) (12.89) (10.68) (0.04) (0.10) (0.05) (0.03) (40.78) (62.10) (54.79) (28.48)
6 6.31 0.99 1.94 0.00 2129.04 2065.03 2090.22 n/a 2287.09 2294.17 2286.60 n/a 8.06 8.18 8.11 n/a 452.97 333.27 402.89 n/a

(0.99) (1.50) (1.07) (0.00) (15.18) (30.84) (7.20) n/a (10.89) (10.11) (7.31) n/a (0.05) (0.05) (0.03) n/a (62.04) (43.92) (27.48) n/a
7 7.88 5.53 1.21 4.91 2117.70 2112.53 2090.19 2127.98 2320.55 2323.43 2301.07 2316.16 8.16 8.17 8.11 8.10 347.37 342.94 411.17 418.57

(3.37) (4.11) (1.27) (0.64) (47.20) (30.49) (15.82) (27.17) (31.78) (14.33) (8.49) (26.90) (0.05) (0.04) (0.04) (0.02) (51.67) (29.78) (41.43) (19.97)
8 10.23 6.71 0.59 n/a 2138.65 2129.34 2089.56 n/a 2332.34 2335.43 2329.87 n/a 8.12 8.15 8.15 n/a 386.80 369.86 372.79 n/a

n/a (2.99) (1.00) n/a (2.94) (16.17) (11.36) n/a (8.47) (6.30) (17.18) n/a n/a (0.03) (0.03) n/a n/a (24.80) (32.84) n/a
9 n/a 0.67 0.14 n/a n/a 2070.94 2060.83 n/a n/a 2298.60 2294.63 n/a n/a 8.19 8.16 n/a n/a 325.05 355.18 n/a

n/a (0.91) n/a n/a n/a (0.13) (12.05) n/a n/a (35.53) (0.06) n/a n/a (0.03) (0.04) n/a n/a (12.54) (38.98) n/a
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1095
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