51 research outputs found

    N-glycome profile levels relate to silent brain infarcts in a cohort of hypertensives

    Get PDF
    Background: Silent brain infarcts (SBIs) are highly prevalent in the aged population and relate to the occurrence of further stroke and dementia. Serum N-glycome levels have been previously associated with aging and they might be related as well to the presence of SBIs and age-related white matter hyperintensities. Methods and Results: We determined the serum N-glycome profile in a cohort study comprising 972 subjects and evaluated the relationship between N-glycome levels and the presence and number of SBIs and with age-related white matter hyperintensities grades, assessed by brain magnetic resonance imaging. Decreasing concentrations of bigalacto core-alpha-1,6-fucosylated biantennary glycan and increasing concentrations of branching alpha-1,3-fucosylated triantennary glycan remained as independent predictors of SBIs (odds ratio 0.4, 95% CI 0.3-0.7 and odds ratio 1.8, 95% CI 1-3.2, respectively), after controlling for the presence of age and classic vascular risk factors. A similar pattern was found to be related to an increasing number of SBIs and white matter hyperintensities grade. Conclusions: N-glycome levels might be potentially useful as biomarkers for the presence of silent cerebrovascular disease

    New candidate blood biomarkers potentially associated with white matter hyperintensities progression

    Get PDF
    We aimed to discover blood biomarkers associated with longitudinal changes in white matter hyperintensities (WMH). This study was divided into a discovery phase and a replication phase. Subjects in both studies were patients with hypertension, aged 50-70, who underwent two magnetic resonance imaging (MRI) sessions and blood extractions over a 4-year follow-up period. In the discovery phase, we screened 1305 proteins in 12 subjects with WMH progression and in 12 matched control subjects. We found that 41 proteins were differentially expressed: 13 were upregulated and 28 were downregulated. We subsequently selected three biomarkers for replication in baseline and follow-up samples in 80 subjects with WMH progression and in 80 control subjects. The selected protein candidates for the replication were MMP9 (matrix metalloproteinase-9), which was higher in cases, MET (hepatocyte growth factor receptor) and ASAH2 (neutral ceramidase), which were both lower in cases of WMH progression. Baseline biomarker concentrations did not predict WMH progression. In contrast, patients with WMH progression presented a steeper decline in MET over time. Furthermore, cases showed higher MMP9 and lower ASAH2 levels than controls at the follow-up. These results indicate that MMP9, MET, and ASAH2 are potentially associated with the progression of WMH, and could therefore be interesting candidates to validate in future studie

    New candidate blood biomarkers potentially associated with white matter hyperintensities progression

    Get PDF
    We aimed to discover blood biomarkers associated with longitudinal changes in white matter hyperintensities (WMH). This study was divided into a discovery phase and a replication phase. Subjects in both studies were patients with hypertension, aged 50-70, who underwent two magnetic resonance imaging (MRI) sessions and blood extractions over a 4-year follow-up period. In the discovery phase, we screened 1305 proteins in 12 subjects with WMH progression and in 12 matched control subjects. We found that 41 proteins were differentially expressed: 13 were upregulated and 28 were downregulated. We subsequently selected three biomarkers for replication in baseline and follow-up samples in 80 subjects with WMH progression and in 80 control subjects. The selected protein candidates for the replication were MMP9 (matrix metalloproteinase-9), which was higher in cases, MET (hepatocyte growth factor receptor) and ASAH2 (neutral ceramidase), which were both lower in cases of WMH progression. Baseline biomarker concentrations did not predict WMH progression. In contrast, patients with WMH progression presented a steeper decline in MET over time. Furthermore, cases showed higher MMP9 and lower ASAH2 levels than controls at the follow-up. These results indicate that MMP9, MET, and ASAH2 are potentially associated with the progression of WMH, and could therefore be interesting candidates to validate in future studie

    New candidate blood biomarkers potentially associated with white matter hyperintensities progression

    Get PDF
    Barrera hematoencefàlica; Interaccions neurovasculars; NeurociènciaBarrera hematoencefálica; Interacciones neurovasculares; NeurocienciaBlood-brain barrier; Neuro-vascular interactions; NeuroscienceWe aimed to discover blood biomarkers associated with longitudinal changes in white matter hyperintensities (WMH). This study was divided into a discovery phase and a replication phase. Subjects in both studies were patients with hypertension, aged 50-70, who underwent two magnetic resonance imaging (MRI) sessions and blood extractions over a 4-year follow-up period. In the discovery phase, we screened 1305 proteins in 12 subjects with WMH progression and in 12 matched control subjects. We found that 41 proteins were differentially expressed: 13 were upregulated and 28 were downregulated. We subsequently selected three biomarkers for replication in baseline and follow-up samples in 80 subjects with WMH progression and in 80 control subjects. The selected protein candidates for the replication were MMP9 (matrix metalloproteinase-9), which was higher in cases, MET (hepatocyte growth factor receptor) and ASAH2 (neutral ceramidase), which were both lower in cases of WMH progression. Baseline biomarker concentrations did not predict WMH progression. In contrast, patients with WMH progression presented a steeper decline in MET over time. Furthermore, cases showed higher MMP9 and lower ASAH2 levels than controls at the follow-up. These results indicate that MMP9, MET, and ASAH2 are potentially associated with the progression of WMH, and could therefore be interesting candidates to validate in future studies.Funds were obtained from the Instituto de Salud Carlos III (Grant Numbers: PI14/01535, PI17/02222, ICI14/307, PI19/00217, CP15/00010, and JR15/00032), incorporation of scientists and technicians to research groups (PERIS, SLT006/17/00266) and the AGAUR (FI_DGR 2017, Grant Number 2017_FI_B 00064), with the support of the Secretary of Universities and Research (Department of Economy and Knowledge, Generalitat de Catalunya), and was cofinanced by the European Regional Development Fund. The neurovascular research laboratory receives funds from the Spanish research stroke network (RD/16/0019/0021)

    Investigating silent strokes in hypertensives : a magnetic resonance imaging study (ISSYS): rationale and protocol design

    Get PDF
    Altres ajuts: This research has been funded with grants from the the Catalonian Society of Hypertension (6th Grant Research in Hypertension).Silent brain infarcts are detected by neuroimaging in up to 20% of asymptomatic patients based on population studies. They are five times more frequent than stroke in general population, and increase significantly both with advancing age and hypertension. Moreover, they are independently associated with the risk of future stroke and cognitive decline. Despite these numbers and the clinical consequences of silent brain infarcts, their prevalence in Mediterranean populations is not well known and their role as predictors of future cerebrovascular and cardiovascular events in hypertensive remains to be determined. ISSYS (Investigating Silent Strokes in Hypertensives: a magnetic resonance imaging study) is an observational cross-sectional and longitudinal study aimed to: 1- determine the prevalence of silent cerebrovascular infarcts in a large cohort of 1000 hypertensives and to study their associated factors and 2-to study their relationship with the risk of future stroke and cognitive decline. Cohort study in a randomly selected sample of 1000 participants, hypertensive aged 50 to 70 years old, with no history of previous stroke or dementia. On baseline all participants will undergo a brain MRI to determine the presence of brain infarcts and other cerebrovascular lesions (brain microbleeds, white matter changes and enlarged perivascular spaces) and will be also tested to determine other than brain organ damage (heart-left ventricular hypertrophy, kidney-urine albumin to creatinine ratio, vessels-pulse wave velocity, ankle brachial index), in order to establish the contribution of other subclinical conditions to the risk of further vascular events. Several sub-studies assessing the role of 24 hour ambulatory BP monitoring and plasma or genetic biomarkers will be performed. Follow-up will last for at least 3 years, to assess the rate of further stroke/transient ischemic attack, other cardiovascular events and cognitive decline, and their predictors. Improving the knowledge on the frequency and determinants of these lesions in our setting might help in the future to optimize treatments or establish new preventive strategies to minimize clinical and socioeconomic consequences of stroke and cognitive decline

    Serum magnesium and calcium levels in relation to ischemic stroke : Mendelian randomization study

    Get PDF
    ObjectiveTo determine whether serum magnesium and calcium concentrations are causally associated with ischemic stroke or any of its subtypes using the mendelian randomization approach.MethodsAnalyses were conducted using summary statistics data for 13 single-nucleotide polymorphisms robustly associated with serum magnesium (n = 6) or serum calcium (n = 7) concentrations. The corresponding data for ischemic stroke were obtained from the MEGASTROKE consortium (34,217 cases and 404,630 noncases).ResultsIn standard mendelian randomization analysis, the odds ratios for each 0.1 mmol/L (about 1 SD) increase in genetically predicted serum magnesium concentrations were 0.78 (95% confidence interval [CI] 0.69-0.89; p = 1.3 7 10-4) for all ischemic stroke, 0.63 (95% CI 0.50-0.80; p = 1.6 7 10-4) for cardioembolic stroke, and 0.60 (95% CI 0.44-0.82; p = 0.001) for large artery stroke; there was no association with small vessel stroke (odds ratio 0.90, 95% CI 0.67-1.20; p = 0.46). Only the association with cardioembolic stroke was robust in sensitivity analyses. There was no association of genetically predicted serum calcium concentrations with all ischemic stroke (per 0.5 mg/dL [about 1 SD] increase in serum calcium: odds ratio 1.03, 95% CI 0.88-1.21) or with any subtype.ConclusionsThis study found that genetically higher serum magnesium concentrations are associated with a reduced risk of cardioembolic stroke but found no significant association of genetically higher serum calcium concentrations with any ischemic stroke subtype

    Advances and Insights into Neurological Practice 2016-17

    Get PDF
    Papers published by the European Journal of Neurology reflect the broad interest of practicing neurologists in advances in the aetiology, diagnosis and management of neurological disorders. As a general journal, the proportion of papers in the different subject areas reasonably reflects the case load of a practising neurologist. Stroke represents the largest proportion of papers published, including those on pathophysiology (1-23), acute stroke management (24-47) and the outcome of patients who have suffered stroke (48-72). This article is protected by copyright. All rights reserved

    The Rotterdam Scan Study: design update 2016 and main findings

    Get PDF

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
    corecore