157 research outputs found

    A Comparison of Large Deflection Analysis of Bending Plates by Dynamic Relaxation

    Get PDF
    In this paper, various dynamic relaxation methods are investigated for geometric nonlinear analysis of bending plates. Sixteen wellknown algorithms are employed. Dynamic relaxation fictitious parameters are the mass matrix, the damping matrix and the time step. The difference between the mentioned tactics is how to implement these parameters. To compare the efficiency of these strategies, several bending plates’ problems with large deflections are solved. Based on the number of iterations and analysis time, the scores of the different schemes are calculated. These scores determine the ranking of each technique. The numerical results indicate the appropriate efficiency of Underwood and Rezaiee-Pajand & Alamatian processes for the nonlinear analysis of bending plates

    On the Geometrically Nonlinear Analysis of Composite Axisymmetric Shells

    Get PDF
    Composite axisymmetric shells have numerous applications; many researchers have taken advantage of the general shell element or the semi-analytical formulation to analyze these structures. The present study is devoted to the nonlinear analysis of composite axisymmetric shells by using a 1D three nodded axisymmetric shell element. Both low and higher-order shear deformations are included in the formulation. The displacement field is considered to be nonlinear function of the nodal rotations. This assumption eliminates the restriction of small rotations between two successive increments. Both Total Lagrangian Formulation and Generalized Displacement Control Method are employed for analyzing the shells. Several numerical tests are performed to corroborate the accuracy and efficiency of the suggested approach

    Revised CPA method to compute Lyapunov functions for nonlinear systems

    Get PDF
    The CPA method uses linear programming to compute Continuous and Piecewise Affine Lyapunov function for nonlinear systems with asymptotically stable equilibria. In it was shown that the method always succeeds in computing a CPA Lyapunov function for such a system. The size of the domain of the computed CPA Lyapunov function is only limited by the equilibrium’s basin of attraction. However, for some systems, an arbitrary small neighborhood of the equilibrium had to be excluded from the domain a priori. This is necessary, if the equilibrium is not exponentially stable, because the existence of a CPA Lyapunov function in a neighborhood of the equilibrium is equivalent to its exponential stability as shown in. However, if the equilibrium is exponentially stable, then this was an artifact of the method. In this paper we overcome this artifact by developing a revised CPA method. We show that this revised method is always able to compute a CPA Lyapunov function for a system with an exponentially stable equilibrium. The only conditions on the system are that it is C² and autonomous. The domain of the CPA Lyapunov function can be any a priori given compact neighborhood of the equilibrium which is contained in its basin of attraction. Whereas in a previous paper we have shown these results for planar systems, in this paper we cover general n-dimensional systems

    A New Triangular Hybrid Displacement Function Element for Static and Free Vibration Analyses of Mindlin-Reissner Plate

    Get PDF
    A new 3-node triangular hybrid displacement function Mindlin- Reissner plate element is developed. Firstly, the modified variational functional of complementary energy for Mindlin-Reissner plate, which is eventually expressed by a so-called displacement function F, is proposed. Secondly, the locking-free formulae of Timoshenko’s beam theory are chosen as the deflection, rotation, and shear strain along each element boundary. Thirdly, seven fundamental analytical solutions of the displacement function F are selected as the trial functions for the assumed resultant fields, so that the assumed resultant fields satisfy all governing equations in advance. Finally, the element stiffness matrix of the new element, denoted by HDF-P3-7β, is derived from the modified principle of complementary energy. Together with the diagonal inertia matrix of the 3-node triangular isoparametric element, the proposed element is also successfully generalized to the free vibration problems. Numerical results show that the proposed element exhibits overall remarkable performance in all benchmark problems, especially in the free vibration analyses

    Generalised path-following for well-behaved nonlinear structures

    Get PDF
    Recent years have seen a research revival in structural stability analysis. This renewed interest stems from a paradigm shift regarding the role of buckling instabilities in engineering design—from detrimental sources of catastrophic failure to novel opportunities for functionality. Novel nonlinear structures take the form of optimised thin-walled structures that operate safely in the post-buckling regime; shape-morphing structures that exploit multi-stability to snap and pop between different configurations; and meta-materials that derive novel material properties from a cascade of choreographed instabilities. Hence, elastic instabilities are no longer considered as structural failures but rather exploited for repeatable well-behaved adaptations. In this article we focus on shape-morphing—a bio-inspired design strategy that intends to conform structures to different operating conditions. Computational tools that integrate easily with established methods used in industry, and that are capable of capturing the full phase diagram of compound instabilities and entangled post-buckling paths typical of these structures, are limited. Such a capability is crucial, however, as confidence in predictive tools can be key in enabling non-conventional designs. One potential candidate in this regard is generalised path-following, which combines the computational robustness of numerical continuation algorithms with the geometric versatility of the finite element method. In this paper we collate an array of successful computational tools introduced by other researchers, and introduce our own developments, to present a modelling framework fit for analysing and designing with well-behaved nonlinear structures in industry and academia. Particularly, we show that the full complexity of multi-snap events of morphing composite laminates is robustly captured by generalised path-following algorithms, and that the ability to determine loci of singular points with respect to a set of parameters is especially useful for tracing the boundaries of bistability in parameter space. Furthermore, we shed new insight into the mechanics of multi-stable laminates, showing that the multi-stability and snapping behaviour of these structures is much richer than previously assumed, featuring many unstable post-buckling branches and localised regions of stability

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function
    • …
    corecore