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Abstract. Composite axisymmetric shells have numerous applications; many researchers have taken advantage of 

the general shell element or the semi-analytical formulation to analyze these structures. The present study is 

devoted to the nonlinear analysis of composite axisymmetric shells by using a 1D three nodded axisymmetric shell 

element. Both low and higher-order shear deformations are included in the formulation. The displacement field is 

considered to be nonlinear function of the nodal rotations. This assumption eliminates the restriction of small 

rotations between two successive increments. Both Total Lagrangian Formulation and Generalized Displacement 

Control Method are employed for analyzing the shells. Several numerical tests are performed to corroborate the 

accuracy and efficiency of the suggested approach. 

Keywords: Geometrical nonlinear analysis; Composite materials; Axisymmetric shells; Shear deformation; Large rotation. 

1. Introduction 

Composite materials consist of two or more materials, which together exhibit the best properties of their constituents. These 

versatilities cause the composite materials to be extensively utilized in various engineering structures. Due to their high 

resistance, composite structures distort largely prior to the plastic deformation occurrence. As a result, these kinds of structures 

should be solved with the help of nonlinear geometric analysis techniques. Published papers clearly demonstrate that 

functionally graded and laminated fiber-reinforced composite materials have been widely employed in the modern shell 

structures. 

The geometric nonlinear analysis of laminated composite shells was performed by Librescu [1] and Dennis and Palazotte 

[2]. To solve the spherical laminated shells under large deformations, Alwar and Narasimhan took advantage of virtual work 

principle [3]. By generalizing the first assumption of Love and Dannel’s theory, Birman proposed an accurate method for 

analyzing the nonlinear behavior of laminated cylindrical shells [4]. In 1993, Chandrashekhara and Kumar studied the exact 

solutions of thick cylindrical shells with simple supports. In their work, shells were analyzed under axisymmetric loads [5]. 

Moreover, they suggested an approximate elastic behavior technique. A hierarchical p-version finite element formulation was 

applied in the geometric nonlinear analysis of composite shells by Liu and Surana [6]. Ziyaeifar and Elwi proposed a more 

accurate shear strain field through the thickness by deploying two new shape functions. Employing the finite element method 

and the Lagrangian formulation, they highlighted the merits of these shape functions [7]. 

Linear and nonlinear analyses of anisotropic shell structures were performed by Argyris et al. They used a 3-noded flat 

shell element with shear deformable capability, known as TRIC [8]. In another paper, Argyris et al. demonstrated the 

performance and accuracy of TRIC element in post buckling analysis of composites [9]. In 2000, Pinto Correia et al. utilized 

the higher-order theory to present a semi-analytical finite element model for solving laminated symmetric shells [10]. In that 

study, Fourier integration was employed for developing displacement and strain fields. Dumir et al. carried out static and 
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transient analysis to assess the behavior of laminated orthotropic symmetric shells under symmetric loads which was uniformly 

distributed. To find the solution, layers were considered to be polar orthotropic. Besides, they took advantage of the first-order 

shear deformation theory [11]. In another study, Pinto Correia et al. analyzed the laminated conical shell. Isoparametric 

elements and the higher-order shear deformation theory were used by these investigators [12]. 

In 2005, Santos et al. studied the bending, free vibration, and buckling of the shells of revolution made of laminated 

orthotropic elastic material by using 3D elasticity theory, semi-analytical finite element model, and Fourier series expansion in 

circumferential direction [13]. Wu et al. proposed 3D solution of the laminated conical shells under axisymmetric load patterns. 

To find the solution, they took advantage of the perturbation method [14]. Additionally, Smith analyzed the static deformation 

and the stress of the axisymmetric shells by applying the flexibility scheme. In that research work, the shell was reduced to ring 

section. The exact evaluation of the stress was utilized in circumferential direction of the rings. On the other hand, the 

distribution of stress in the meridional direction was assumed to be linear [15]. Reddy introduced a refined nonlinear theory of 

plates accounting for the von karman strains. In his study, parabolic transverse shear strains were assumed to vary through the 

thickness of the plates [16]. The same author presented a review of the theories for equivalent-single-layer and also layer-wise 

laminates [17]. 

Mantary et al. developed a new higher-order shear deformation theory for elastic laminated plates and shells [18]. The 

parabolic distribution of the transverse shear strains through the thickness was utilized in their formulation. They used the 

principle of the virtual work to derive the governing equations. Han et al. proposed an element for the nonlinear analysis of 

laminated shells based on a modified first-order shear theory [19]. Their element showed neither membrane nor shear locking 

problem. That behavior was accomplished by using natural co-ordinate-based higher-order transverse shear strains. Reddy and 

Liu developed a higher-order shear deformation theory for the analysis of laminated shells [20]. They presented exact solutions 

for deflections and natural frequencies of cross-ply shells. Noor et al. presented an analytical formulation for predicting the 

linear small deformation response of the laminated anisotropic shells of revolution. They used the Sanders-Budiansky shell 

theory, including the effects of both the transverse shear deformation and the laminated anisotropic material properties [21]. 

Sheinman et al. studied the nonlinear analysis of geometrically imperfect, thin, laminated circular cylindrical shells 

subjected to a uniform axial compression. They investigated the effect of stacking lamina on the responses [22]. Patel et al. 

employed the semi-analytical finite element approach to study the influence of ply-angle and number of circumferential waves 

on the pre/post-buckling response of the anti-symmetric angle-ply laminated circular conical shells [23]. In another paper, they 

investigated the post-buckling behavior of laminated shell of revolution with meridional curvature subjected to thermal and 

mechanical loads. They utilized a semi-analytical finite element approach based on the first-order shear deformation theory and 

the field consistency approach [24]. Cagdas developed a curved axisymmetric shell finite element based on the first-order 

shear deformation theory to analyze the linear stability of cross-ply laminated shells of revolution. A consistent thick shell 

theory is used in that formulation [25]. 

Wu and Chi presented an asymptotic theory for the analysis of laminated composite cylindrical shells under cylindrical 

bending based on the 3D nonlinear elasticity. They employed the perturbation method to decompose the 3D nonlinear theory 

into a series of 2D nonlinear theories for various orders [26]. Bhaskar and Varadan presented a displacement-base   

continuous isoparametric quadrilateral shell element for the analysis of laminated anisotropic shells of revolution [27]. 

Bhimaraddi et al. developed a shear deformable isoparametric quadrilateral shell element for the analysis of laminated shells of 

revolution. Parabolic shear strain variation was employed to obtain a more realistic variation for the transverse shear strain [28]. 

Chang and Sawamiphakdi presented a degenerated three-dimensional isoparametric element for conducting large deformation 

analysis of laminated anisotropic shells. The updated Lagrarangian formulation was used to derive the nonlinear geometric 

stiffness matrices [29]. Rezaiee-Pajand and Arabi proposed a 6-node triangular isoparametric shell element for the 

geometrically nonlinear analysis of laminates. They utilized the mixed interpolation technique to alleviate the shear and 

membrane locking problem [30]. Xu studied the buckling and post-buckling of the laminated cross-ply spherical cap under 

uniform normal pressure. Transverse shear deformations were included in derivation of governing equations [31]. Alankaya 

and Oktem performed static analysis of the cross-ply doubly-curved shell using a third order shear deformation theory [32]. 

The buckling analysis of a non-homogeneous orthotropic truncated conical shell under axial compression and external pressure 

is presented by Sofiyev and Kuruoglu [33]. Rezaiee-Pajand et al. developed a curved triangular element for nonlinear analysis. 

They took advantages of interpolation functions for strain fields to improve the element behavior [34]. 

In 2009, Santos et al. developed a semi analytical axisymmetric finite element model for studying free vibration of 

functionally graded cylindrical shells [35]. The nonlinear static and dynamic buckling analysis of functionally graded shallow 

spherical shells was performed by Bich et al. [36]. They took into account the von Karman-Donnel geometrical nonlinearity 

along with the classical shell theory for derivation of the governing equations. Bich and Tung presented an analytical 

formulation to study the nonlinear axisymmetric behavior of functionally graded shallow spherical shells under uniform 

external pressure [37]. In another work, Zozulya and Zhang utilized the Fourier series expansion and proposed a higher-order 

theory of functionally graded axisymmetric cylindrical shell [38]. In 2014, Viola et al. applied a two-dimensional 

unconstrained third-order shear deformation theory to investigate the behavior of functionally graded conical shells and panels 

[39]. They used the Generalized Differential Quadrature method to solve the derived partial differential equations. Arciniega 

and Reddy developed a tensor-based functionally graded shell finite element [40]. To mitigate the locking problems, the field 

variables were approximated using higher-order Lagrangian interpolation functions. Kar and Panda developed a mathematical 

model based on the higher order shear deformation theory for studying the nonlinear free vibration behavior of functionally 

graded spherical shells [41]. The three-dimensional analysis of functionally graded axisymmetric circular plates was performed 

employing mesh less method by Wu and Liu [42]. 
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Based on the available literature, published technical articles on the topic of higher-order shear deformation theory of the 

composite shells are enormous. However, most of them are devoted to general shells. It is worth mentioning that only a few 

research works have dealt with the geometric nonlinear analysis of the composite axisymmetric shell by using 1-dimensional 

axisymmetric elements with large rotation capability. In fact, previous published papers took advantage of the higher-order 

shear deformation theory and the general shell element or the semi-analytical approach to solve the axisymmetric shell. As 

these structures have vast applications in industry, this paper is specifically devoted to the static analysis of composite 

axisymmetric shells. A1D axisymmetric element presented for isotropic material by Surana [43] is improved for geometrically 

nonlinear analysis of composite structures utilizing the higher-order shape functions along with the displacement field theory. 

To prove the capability of the authors' approach, several numerical samples will be solved. The obtained numerical solutions 

will be compared with the other researchers' results as well. 

2. Finite element formulation 

For the finite element modeling of the axisymmetric shell, an isoparametric 1D three-nodded element is deployed. This 

element is illustrated in Fig. 1. where curvilinear coordinates are presented by r and s. The geometry of the structure is defined 

as follows: 
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Fig. 1. Isoparametric 1D three-nodded element 

 

where ih and it  are shape function and thickness of node i , respectively. The nodal variables and angle iϕ  at i  are 

demonstrated in Fig. 2. 
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Fig. 2. Nodal variables and local coordinates 

 

Based on these Figures, the displacement field of any arbitrary point P  of the shell can be expressed as 
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In these equations, the rotation angles of the vector normal to the mid plane are denoted byα and β . The shape function of 

node i  is shown by ( )ih r . It should be noted thatα represents the assumption of the first-order shear deformation theory 

(hereafter FSDT), while β
 

involves the higher-order shear deformation term (hereafter HSDT). Take into consideration that 

the isoparametric coordinates are r and s . Stress-strain relations have the following appearance in the global coordinates: 

 

{ } [ ]{ }Qσ ε=                                            (4) 

[ ] [ ] [ ]TQ T Q T =  
                                        (5) 

[ ]

( ) ( )

2 2

2 2

2 2

2 0

2 0

0

0 0 0 1

sin , cos

c s sc

s c sc
T

sc sc c s

s cγ γ

 −
 
 =
 − −
 
 

= =

                                    (6) 

 

Here, the angle between coordinate x and x ′ is shown by γ . The coefficients of the constitutive matrix are given for two 

cases: Laminates and Functionally graded materials (FGM). These parameters are presented in material coordinates for each 

orthotropic lamina and FGM, respectively:  
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In which E , ν , and G represent the engineering constants. Moreover, the subscripts m and c stands for to the metal and 

ceramic constituents. The volume fraction exponent is shown by n. It is worth mentioning that in FG material, Poisson's ratio is 

considered to be constant through the thickness. 

In global coordinates, the strains for an axisymmetric shell have the following form: 
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In this case, u x  corresponds to the strain in circumferential direction. Moreover, x represents the projection of an 

arbitrary point position in radial direction. The strains can be divided into a linear and nonlinear part as 
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At point i , the variation of the nodal variable can be expressed as follows: 
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Using Eqs. (9) and (10), the variation of the linear and nonlinear strain is written in terms of nodal variable { }d as 

follows: 

 

{ } [ ] { } [ ][ ] { } [ ] { }l l l lH H G d B dδ ε δ θ δ δ= = =                            (13) 
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{ } [ ] { } [ ] [ ] [ ] { } [ ] { }l nl l nlB B d H H G d B dδ ε δ δ δ = + = + =                       (15) 

The entries of matrix [ ]G  are presented in Appendix A. The equation of static equilibrium has the following shape: 

{ } { } [ ] { } { } { }T

V

R B dV R Pψ σ= − = −                                (16) 

where { }R and { }P denote the vectors of external and internal forces, respectively. Since Eq. (16) cannot be solved directly 

for deflections, an incremental equation of equilibrium should be derived. This equation has the following form: 
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By using the relation { } [ ] { }Qδ σ δ ε= , Eq.(17) can be rewritten as follows: 
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Inserting Eq. (15) into integral of the Eq. (18) leads to the geometric stiffness matrices. These matrices have the following 

appearance: 
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It can be easily shown that [ ] { } [ ][ ] { }T
nlH S G dδ σ δ= . Using this equation, the following expression is achieved 

for 1GK   : 
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In this relation, 2I  is a 2 2×  unit matrix. The next equation is held for 2GK   :  
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Treating { }σ̂  as constant values, the following equalities can be written: 
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For each node i , the variation of { }N  can be found. It should be noted, if both 1N and 2N are constants, the following 

expressions are held: 
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By using Eqs. (26) and (27), 2GK    is obtained as follows: 
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In a similar manner, the next expressions can be obtained for 3GK   : 
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It should be added that the value of 3iP , 3iQ , 3iP , 3iQ , 3
ˆ

iP , 3
ˆ

iQ , 3iPɶ , and 3iQɶ are given in Appendix B. 

Based on the presented formulation, a computer code is developed. To find the answers, the incremental equation of static 

equilibrium is solved by using the Generalized Displacement Control Method (GDCM) (Leon et al. [44]). The incremental-

iterative procedure is given in Appendix C. 

3. Numerical study 

In this section, the proposed approach is applied to analyze several sample structures. The numerical examples are 

presented in three parts. To validate the accuracy of the responses, the obtained results are compared with those found by the 

other researchers at first. In this way, the ability of the suggested formulation is assessed. In the second part, the structures are 

analyzed by the presented 1-D axisymmetric element and also by using a doubly curved triangular 6-nodded shell element 

proposed in [30]. This comparison study reveals the method accuracy. More important, when the present technique is used in 

the analysis, it extremely demonstrates the saving time. Part three demonstrates the nonlinear analysis of functionally graded 

axisymmetric shells for various power law indexes. Regarding the effects of shear deformation in composite axisymmetric 

shells, the responses are calculated for two cases, namely, FSDT and HSDT. 

3.1 Part 1 

3.1.1 Annular plate 

The deformation of the ring-shaped plate illustrated in Fig. 3b is computed. A finite element model of the plate using 3 

three-node axisymmetric elements is shown in Fig. 3c.  
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This structure was previously analyzed by Dumir et al. [11]. The aforementioned structure has five orthotropic layers. The 

thickness of these layers is the same. The plate is subjected to the uniformly distributed load. Three different ratios of the 

radius to thickness, 10, 20, and 100, are studied. The external edge of the plate is fixed and the inner edge is free in the 

direction of the deflection. The layers are arranged with respect to the radial direction (0/90/0/90/0). The material properties are 

given below: 
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In Fig. 4, dimensionless diagrams are utilized to show the results obtained from the authors' technique against the method 

presented in [11]. It is worth mentioning that the first-order shear deflection theory was applied in the latter approach. It is 

obvious that the shear deformation plays an important role in plates with a low ratio of the radius to thickness. Moreover, this 

deformation has more effect on the behavior of plates made of the orthotropic material with greater modular ratioψ . Based on 

FSDT and HSDT, the deflection of the laminated plate for 4 4
1 130pa E h =  is computed by using the proposed formulation. The 

results are shown in Table 1. Clearly, the displacement corresponding to the HSDT is less than that of FSDT. 

 
Table 1. Dimensionless displacement of the ring-shaped plate 
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Fig. 4. Deflection of the annular plate 

3.1.2 Cylindrical shell 

A one-layer glass-epoxy cylinder subjected to a uniform internal pressure and its corresponding finite element model 

utilizing 10 three-node axisymmetric elements are shown in Fig. 5. The cylinder is clamped at both ends. Radius, length, and 

thickness of the shell are R=20, L=20, and h=1, respectively. The material properties are characterized by the following elastic 

constants: 

1 7500E =  , 2 2000E =  , 12 0.25υ =  , 625G =  

 
Fig. 5. Cylindrical shell under internal pressure and its corresponding meshing 

 

As can be seen, Fig 6 contains the plot of center deflection of the shell versus the internal pressure, for the present 

formulation and the work done in [29]. The agreement between the present and reference results is very good. Table 2 shows 

the difference between the solutions when the FSDT and HSDT models are used. 
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Fig. 6. Radial deflection of cylindrical shell under internal pressure 
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Table 2. Radial displacement versus internal pressure 

Internal Pressure HSDT FSDT 

2 0.3496 0.3490 

4 0.6386 0.6380 

6 0.8765 0.8759 

8 1.0771 1.0766 

10 1.2504 1.2500 

 

3.1.3 Spherical cap 

In this problem, the post-buckling response of a clamped cross-ply spherical cap which has five layers is investigated. The 

cross-section of spherical cap and its finite element discretization using 10 three-node axisymmetric elements is shown in Figs. 

7(a), (b). The shell is under a uniform normal pressure. The elastic constants have the following relations: 

1

2
10

E
E

=   ,   
2

0.333G
E

=    ,   12 0.22υ =  

Fig. 7. Spherical shell 

 

The response curves of spherical shell for values of 0.1H a =  and 15a h = are compared in Fig. 8 with the result 

obtained by Xu [31]. The comparisons between the results indicate that dimensionless displacements of the HSDT method are 

more than FSDT. 
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Fig. 8. Cylindrical shell under internal pressure and its corresponding meshing 

3.2 Part 2 

3.2.1 Conical laminated shell 

A conical three-layer shell is shown in Fig. 9. The shell is modeled using 10 three-node axisymmetric elements. This 

structure is analyzed under the ring load. In the larger span, the shell's supports are fixed in the vertical direction. The material 

properties and structure's geometry are expressed in the following form: 

1

2
3

E
E

=  , 
2

0.6G
E

=  ,  0.3υ =  ,  2 11000E =  ,  1

2
3

R
R

=  ,  1 15
R

h
=  , 

1
3R =  ,  0.5H =  

 

  
(a)  Geometry description (b)  Finite element discretization 
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Fig. 9. Conical shell 

 

The nonlinear analysis of the shell is carried out using the present 1-D axisymmetric shell element and 12 12 2× ×  doubly 

curved triangular 6-nodded shell element proposed in [30]. The deflection of the mid plane at free span versus the load factor is 

plotted in Fig. 10, for two cross-ply laminates with schemes (0/90/0) and (90/0/90). It should be noted that the average time of 

the analysis for the present formulation is about 1/200 of the general shell formulation. This shows an extremely time saving 

merit, when the present scheme is utilized. 
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Fig. 10. Deflection of conical shell under ring load 

 

The downward deflections of the cutout for FSDT and HSDT methods are listed in Table 3. Comparing the responses of the 

nonlinear analysis reveals that the vertical displacement of conical shell using HSDT method is greater than FSDT. 

 
Table 3. The downward deflection of conical shell 

Load Factor 
[0/90/0] [90/0/90] 

FSDT HSDT FSDT HSDT 

0.2 1.1232 1.1247 0.9930 0.9947 

0.4 1.2407 1.2420 1.1345 1.1360 

0.6 1.3302 1.3322 1.2299 1.2313 

0.8 1.3984 1.3995 1.3035 1.3047 

1.0 1.4586 1.4594 1.3659 1.3669 

3.2.2 Cross-ply spherical shell  

The cross-ply spherical shell, with stacking sequences (0/90/0) and (90/0/90), is analyzed. The shell has a 18o
 circular 

cutout at its pole and is loaded by a ring force at the cutout. The shell and its geometric descriptions are shown in Fig. 11. A 

finite element model adopting 10 three-node elements is applied. The material data used for this analysis has the following 

values: 
7

1 6 10E = × , 
7

2 2 10E = × , 
71.125 10G = × , 

12
0.3υ =  

As shown, Fig. 12 plots the load factor against the downward deflection of the cutout for the present shell element. The 

results of nonlinear formulation utilizing 21212 ××  doubly curved triangular shell element are also included in Fig. 12 for 

comparison. It is worth mentioning that the average time to reach the solution for the general shell formulation is about 287 

times more than the present element. This is the advantage of using the present 1-D axisymmetric shell element instead of the 

general shell element. 
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Fig. 11. Spherical shell with cutout 
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Fig. 12. Deflection of spherical shell under ring load 

 

FSDT and HSDT results are presented in Table 4 for two lamination sequences, namely, [0/90/0] and [90/0/90]. According 

to the Table 4, the spherical shell undergoes a lower displacement when utilizing the higher-order shear deformation theory. 

Table 4. The deflection of spherical shell 

Load 

Factor 

[0/90/0] [90/0/90] Load 

Factor 

[0/90/0] [90/0/90] 

FSDT HSDT FSDT HSDT FSDT HSDT FSDT HSDT 

0.2 0.0437 0.0437 0.0455 0.0455 0.8 1.0145 1.0316 0.6025 0.6250 

0.4 0.0974 0.0973 0.1023 0.1022 0.8 1.9737 1.9606 1.9236 1.9085 

0.6 0.1683 0.1681 0.1792 0.1788 1.0 2.3101 2.2986 2.1915 2.1755 

0.8 0.2758 0.2743 0.3336 0.3282      

3.3 Part 3 

3.3.1 Conical FG shell 

The conical shell which previously analyzed in sample 1 of part 2 is investigated. The material properties for ceramic and 

metal are given as 

7
7 10

m
E = ×   ,   

8
1.51 10

c
E = ×   ,   0.3υ =  

The maximum applied load is equal to 30000. The load-deflection curves are illustrated for the different volume fraction 

exponent in Fig.13. It is worth mentioning that fully ceramic and metal behavior is achieved as 0n →  and n → ∞ , 

respectively. 

The maximum downward deflection of the cutout for FSDT and HSDT methods is inserted for the different volume 

fraction exponent in Table 5. 
 

Table 5. Maximum deflection of functionally graded conical shell 

n FSDT HSDT 

0.0 1.0039 1.0038 

0.2 1.0228 1.0213 

0.5 1.0421 1.0410 

5.0 1.0970 1.0981 

10.0 1.1106 1.1157 

100.0 1.1371 1.1406 
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Fig. 13. Load-Deflection curves of conical shell for different volume fraction exponent 

3.3.2 Spherical FG shell 

A functionally graded spherical shell with cutout is analyzed in this section. The geometrical data is as those presented in 

sample 2 of part 2. The material properties for ceramic and metal have the following values: 
7

7 10
m

E = ×       ,    
8

1.51 10
c

E = ×      ,      0.3υ =  

The load applied at the cutout is incrementally increased up to 20000. The deflection versus the load factor for various 

amounts of the volume fraction exponent are shown in Fig. 14. 

The maximum vertical displacements, which are obtained by FSDT and HSDT methods, are compared for the various 

volume fraction exponents in Table 6. 
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Fig. 14. Equilibrium path of spherical shell for various amounts of volume fraction exponent 

Table 6. Maximum vertical displacement of functionally graded spherical shell 

n FSDT HSDT 

0.0 2.8510 2.8282 

0.2 3.9123 3.8546 

0.5 4.2672 4.2508 

5.0 6.5254 6.5062 

10.0 6.7732 6.7583 

100.0 8.5150 8.5183 

4. Conclusions 

The finite element method is a very powerful scheme for solving the composite structures. In the present study, with the 

help of this method, the axisymmetric shells were analyzed using the authors' technique. In the laminated case, the shell's 

layers were assumed to be orthotropic. A 1D three nodded axisymmetric shell element was utilized. Higher-order shape 

functions and a large rotation technique were deployed in the formulation. The effects of lamination sequences on the structural 

responses were studied as well. Moreover, the various power law indexes were utilized to investigate the behavior of 

functionally graded shells. Comparing the results of the schemes of this study with other researchers' approaches proved the 

high ability of the suggested formulation in modeling the composite axisymmetric shells. Furthermore, a comparison for the 

average time to reach the solutions was made between the present element and a doubly curved shell element in laminated 

structures. By using the present formulation, the time of the analysis is enormously reduced with no loss of accuracy. 
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Nomenclature 

[ ]B  

Matrix relating incremental nodal 

displacements to the incremental Green's 

strains 

,r s  Curvilinear coordinates 

[ ]lB  

Matrix relating incremental nodal 

displacements to the incremental linear 

strains 

vu,
 

Deflection in the 

global x and y directions 

[ ]nlB
 

Matrix relating incremental nodal 

displacements to the incremental 

nonlinear strains 

,i iu v  Deflection at node i  

{ }d  Generalized nodal displacement yx,  Global Cartesian directions 

ih
 

Shape function for node i  ,i iα β  
Rotation degrees of freedom at node 

i  

[ ]J
 

Jacobian matrix { }dδ  Generalized nodal displacement 

[ ] 1−
J

 
Inverse of the Jacobian matrix { }ε  Global Green strain vectors 

[ ] [ ] [ ] [ ]1 2 3, , ,l G G GK K K K
 

Element stiffness matrices { }σ  Global Piola Kirchhoff stress vectors 

{ }P
 

Generalized internal force vector iϕ  Angle at node i  

[ ]Q
 

Elasticity matrix { }ψ  Vector of residuals 

{ }R
 

Generalized external load vector   

Appendix A 

The entries of matrix G have the following shapes: 
3

11 11

1

i

i

h
G A
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In these equations, 

11A  , 
12A , 

21A  and 
22A  are the entries of the inverse of the below Jacobbian matrix. 

[ ] [ ] 1 11 12

21 22

x y
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J J

x y A A
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−
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Appendix B 

In the below lines, the value of 3iP , 3iQ , 3iP , 3iQ , 3
ˆ

iP , 3
ˆ

iQ , 3iPɶ  and 3iQɶ are given: 
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Appendix C 

The incremental-iterative procedure, which is performed on the jth iteration of the ith incremental step, is according to the 

following steps: 

1- Compute 1
iδλ :

1

1 1 2
1 11

1 1 1
1 1

p pi

i i
p p

u u

u u

δ δ
δλ δλ

δ δ−

 ⋅
 = ±
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2- Compute the global tangent stiffness matrix 
i
jK  

3- Compute
i
pjuδ : ( ) 1

1
i i
pj ju K pδ

−
−=  

4- Compute
i
rjuδ : ( ) 1

1 1
i i i
rj j ju K rδ

−
− −=  

   5- Compute
i
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1
1 1 1

1
1

1
1

1

2

i i i
p p

i
j i i
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c
for j

u u

u u
for j

u u

δλ δ δ
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δ δ

δ δ

−

−

−

 = ⋅= 
⋅ − ≥ ⋅

              ( ) ( )2
1 1 1
1 1 1p pc u uδλ δ δ= ⋅  

6- Update total load factor: 
i i i

jλ λ δλ= +  

7- Update external load vector: 
i i i

jp p pδλ= +  

8- Update total displacement vector: 
i i i i i

j pj rju u u uδλ δ δ= + +  

9- Calculate the internal load ( )i
q u  

10- Compute unbalance load vector: ( )i i i
jr p q u= −  

11- The procedure continues from step 2 until the convergence criterion is achieved 
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