607 research outputs found

    Converse theorems on contraction metrics for an equilibrium

    Get PDF
    The stability and basin of attraction of an equilibrium can be determined by a contraction metric. A contraction metric is a Riemannian metric with respect to which the distance between adjacent trajectories decreases. The advantage of a contraction metric over, e.g., a Lyapunov function is that the contraction condition is robust under perturbations of the system. While the sufficiency of a contraction metric for the existence, stability and basin of attraction of an equilibrium has been extensively studied, in this paper we will prove converse theorems, showing the existence of several different contraction metrics. This will be useful to develop algorithms for the construction of contraction metrics

    Numerical determination of the basin of attraction for exponentially asymptotically autonomous dynamical systems

    Get PDF
    Numerical methods to determine the basin of attraction for autonomous equations focus on a bounded subset of the phase space. For non-autonomous systems, any relevant subset of the phase space, which now includes the time as one coordinate, is unbounded in t-direction. Hence, a numerical method would have to use infinitely many points.\ud \ud To overcome this problem, we introduce a transformation of the phase space. Restricting ourselves to exponentially asymptotically autonomous systems, we can map the infinite time interval to a finite, compact one. The basin of attraction of a solution becomes the basin of attraction of an exponentially stable equilibrium. Now we are able to generalise numerical methods from the autonomous case. More precisely, we characterise a Lyapunov function as a solution of a suitable linear first-order partial differential equation and approximate it using Radial Basis Functions

    Computation and verification of Lyapunov functions

    Get PDF
    Lyapunov functions are an important tool to determine the basin of attraction of equilibria in Dynamical Systems through their sublevel sets. Recently, several numerical construction methods for Lyapunov functions have been proposed, among them the RBF (Radial Basis Function) and CPA (Continuous Piecewise Affine) methods. While the first method lacks a verification that the constructed function is a valid Lyapunov function, the second method is rigorous, but computationally much more demanding. In this paper, we propose a combination of these two methods, using their respective strengths: we use the RBF method to compute a potential Lyapunov function. Then we interpolate this function by a CPA function. Checking a finite number of inequalities, we are able to verify that this interpolation is a Lyapunov function. Moreover, sublevel sets are arbitrarily close to the basin of attraction. We show that this combined method always succeeds in computing and verifying a Lyapunov function, as well as in determining arbitrary compact subsets of the basin of attraction. The method is applied to two examples

    Guided Unfoldings for Finding Loops in Standard Term Rewriting

    Full text link
    In this paper, we reconsider the unfolding-based technique that we have introduced previously for detecting loops in standard term rewriting. We improve it by guiding the unfolding process, using distinguished positions in the rewrite rules. This results in a depth-first computation of the unfoldings, whereas the original technique was breadth-first. We have implemented this new approach in our tool NTI and compared it to the previous one on a bunch of rewrite systems. The results we get are promising (better times, more successful proofs).Comment: Pre-proceedings paper presented at the 28th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2018), Frankfurt am Main, Germany, 4-6 September 2018 (arXiv:1808.03326

    Converse theorem on a global contraction metric for a periodic orbit

    Get PDF
    Contraction analysis uses a local criterion to prove the long-term behaviour of a dynamical system. A contraction metric is a Riemannian metric with respect to which the distance between adjacent solutions contracts. If adjacent solutions in all directions perpendicular to the flow are contracted, then there exists a unique periodic orbit, which is exponentially stable and we obtain an upper bound on the rate of exponential attraction. In this paper we study the converse question and show that, given an exponentially stable periodic orbit, a contraction metric exists on its basin of attraction and we can recover the upper bound on the rate of exponential attraction

    Loops under Strategies ... Continued

    Full text link
    While there are many approaches for automatically proving termination of term rewrite systems, up to now there exist only few techniques to disprove their termination automatically. Almost all of these techniques try to find loops, where the existence of a loop implies non-termination of the rewrite system. However, most programming languages use specific evaluation strategies, whereas loop detection techniques usually do not take strategies into account. So even if a rewrite system has a loop, it may still be terminating under certain strategies. Therefore, our goal is to develop decision procedures which can determine whether a given loop is also a loop under the respective evaluation strategy. In earlier work, such procedures were presented for the strategies of innermost, outermost, and context-sensitive evaluation. In the current paper, we build upon this work and develop such decision procedures for important strategies like leftmost-innermost, leftmost-outermost, (max-)parallel-innermost, (max-)parallel-outermost, and forbidden patterns (which generalize innermost, outermost, and context-sensitive strategies). In this way, we obtain the first approach to disprove termination under these strategies automatically.Comment: In Proceedings IWS 2010, arXiv:1012.533
    corecore